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1 Introduction
Let 0 <s; <1,0<s, <1,and &y, @y, B, B2 > 0. Let @ C RN, N > 3 be an open bounded
domain with C'! boundary 9S2.

In this article, we deal with the existence, non-existence, uniqueness, and other qualita-

tive properties of solutions to the following singular system:

Liu=kix)uvP, u>0 inQ u=0, inRV\Q,

(S)
Loyv=k@®)v?u, v>0 inQ v=0, inRV\Q
Here £;, i = 1,2 is the mixed operator, defined as:
Li=-A+(-A)%. (1.1)
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On the right-hand side, k; : 2 — (0, +00), j = 1,2 are continuous functions that satisfy the

following growth condition: for some 4; > 0 and any x € £,
Crd™(x) < kj(x) < Cyd ™ (x), (1.2)

where Cy, C; > 0 and d(x) := dist(x, 0R2) = inf)eyq|x — y|, for any x € Q. The word mixed
above refers to the type of the operator combining the classical Laplacian (—A) and the

fractional Laplacian (- A)?, which for a fixed parameter s € (0, 1), is defined as

u(x) — u(y) p

|N+2$ Vs

(=AY u(x) = C(N,S)P.V./
RN |x -y

where PV. denotes the Cauchy principal value, and C(N,s) is an appropriate normalizing

constant, whose explicit expression is given by

1 -1
C(N,s) = (f]RN @%ﬁf”d@) .

We refer the reader to [1, 7, 17] for a comprehensive discussion of the main properties
of this fractional operator, which includes various real-world applications as well as re-
sults pertaining to continuous and compact embeddings and other important properties.
For recent advancements in obtaining precise estimates for the best constants in frac-
tional subcritical Sobolev embeddings, we direct the reader to the work by [12]. Further-
more, significant results have been explored in the context of fractional problems involving
mixed Dirichlet~Neumann boundary conditions or Choquard problems. For additional
relevant works and valuable insights on these topics, we refer to [6, 30].

The mixed-type operator (1.1) has many applications in the real world, such as physical
phenomena that arise naturally from a mixed dispersal strategy. Dispersal usually refers
to the movement of a biological population (whose density is described by # and which is
self-competing for the resources in a given environment €2) from one location to another.
Various types of movement exist, such as local dispersal and non-local dispersal. In [29],
it is shown how mixed dispersal affects the invasion of a single species and how the mixed
dispersal strategies will evolve in spatially periodic but temporally constant environment.
We refer further to [18], which proposes a model that describes the diffusion of a bio-
logical population living in an ecological niche and subject to both local and non-local
dispersals. See also [13, 19, 32] for further explanations and applications. In view of this
motivation, the study of elliptic problems involving mixed types of operators has received
much attention lately. In particular, many research papers have investigated the results
of the existence, uniqueness, as well as maximum principle, interior Sobolev-Lipschitz
regularity, and other qualitative properties, we refer to [3, 5] without giving an exhaustive
list.

1.1 Motivation and literature
Singular systems, represented as (S), hold a significant interest in studying models derived

from molecular biology. In this context, Gierer and Meinhardt [25] introduced the follow-
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ing mathematical model: for p,¢q,r,s >0

Ot = di Au— au + co’ v 1+ pop in Q x (0, 7),

Ov=doAv—Bv+cp'u'v? in Q x (0, T),

where u and v are the concentrations of the chemical substances of activator (a slowly
diffusing substance) and inhibitor (a rapidly diffusing substance) with the source distribu-
tions p and p’ respectively. Also, d; and d, are the diffusion coefficients, while «, 8, ¢, ¢, po
are positive constants. The problem is subject to Neumann boundary conditions in a
smooth bounded domain 2. It explains the pattern formation of spatial tissue structures in
hydra during morphogenesis, which is a biological phenomenon first discovered by Trem-
bley in 1744. For a detailed presentation on this topic, we refer the reader to [21]. In the
following, we present a brief literature survey of the problems of the type (S):

+ Local case: We start with the work [20] where the author deals with the system (S) and
investigates the existence, non-existence, and uniqueness of classical solutions in
C(R) N C*(R) by applying the fixed-point Theorem, and sub—solutions and
super-solutions methods, when £; = £, = —A. Additionally, we refer to [24] to extend
the results of existence, uniqueness, and regularity to the nonlinear p-Laplace
operator, defined as A u = div(|VulP~% Vu), with p > 1. For further discussion, we
refer the reader to [10, 14, 15] and the references cited therein.

+ Non-local case: In this regard, we can quote [26]. Here the author discusses the
existence of weak solutions and investigated the asymptotic behavior of these
solutions near 92, when £, = L5 = (-A), s € (0, 1). Furthermore, Araujo et al.
extended the results obtained in [20] to the fractional Laplace operator, as presented
in [16]. For the general case, we refer the readers to [28], where the existence,
non-existence, and uniqueness of C() solutions to fractional p-Laplace operator are
investigated.

However, there are very few results on mixed operator systems. In this regard, we can
cite [9]. The authors considered an eigenvalue problem for a system of local and non-
local operators. They prove the existence and simplicity of the first eigenvalue, while also
studying its asymptotic behavior as p — oo.

It is worth noting that before delving into the study of our problem, we need to analyze
single equations in the presence of singular nonlinearity. For significant insights and an
extensive bibliography covering motivations related to the study of such equations, which
frequently arise in various real-world models, both in local and non-local cases, we refer
to [3, 4, 22, 27].

Our first main goal in the present article is to investigate the non-existence of classical
solutions to system (S) by using the same approach in the paper [20]. Next, we will obtain
the existence of weak solution in the sense of Definition 1.1 by means of Schauder’s fixed-
point theorem. To this aim, we need to define the following operator: for any («,v) in H

T:H—>H by @v)— Tuv):=(TW),T(w), (1.3)

where
() x HE

loc(2) that contains all positive

» H is a suitable closed convex subset of H&m

functions behaving suitably in terms of the distance function.
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e TI(v) e H!

loc

(Q) and T2(u) € H}

1oc(§2) are defined to be the unique positive weak

solutions of the following Dirichlet problems, respectively:

L1(Ti(v) = ki) (T ()™ v, Ti(v) >0 in ; Ti(v) =0, in RN\ @, (1.4)
Lo(To(w)) = ka(x)(T2(w)™ 262, To(u) > 0 in Q; To(u) =0, in RV \ Q. (1.5)

Afterward, we also need to check that
T(H) CH, T is compact and continuous.

Remark 1.1 The operator 7 has the following properties:
(1) Any fixed point of T is a positive solution pair for (S), and conversely.
(2) The mappings 77 and 7; are order-reversing under some conditions to be defined

later (see Theorem 2.1 below). Moreover, we obtain the (point-wise) order-preserving
of the following mappings:

ur— (TioT)(m) and vi— (T30 T1)W).
(3) For A €1]0,1[, we have:
__P1_ __Pa_
TiGw) =2 T Ti(v) and  Ta(hu) = A 2T Ty(u).
Then

B B
(T1 0 To)(Au) = e+ 2251 (Ty o To)(w),

fo B
(T2 0 TD(Ww) = 2221 @ T (T 0 Ti)(v).

(4) 1tis easy to check that the mappings 77 o T, and 7; o T; are sub-homogeneous
under the following condition:

(a1 +1) (a2 +1) > B1Ba. (1.6)
Furthermore, there exists t € (0; +00) such that

Oll+1 ,32
>T >

B1 a+ 1’

or, equivalently
a1 +1>16; and t(ap +1) > Bs. (1.7)
We will see that condition (3) leads to the uniqueness of a positive fixed point.
1.2 Mathematical background and main results

First, we recall some notation that will be used throughout this paper:
e Let Q C RN, N > 3 an open bounded domain with boundary of class C*!.
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e We recall that the Sobolev space H!(RV) is defined as

H'(RY):={ueL*(RY), VueL®*(RV)},

equipped with the norm
el ey = lluell 2wy + VUl 2y -

e The Sobolev space H} () is defined as the closure of C°(€2) in the norm
”u”Hé(Q) = Vull 2,

where
Co(Q):={p : RN >R:peC®R") and supp(p) € Q}.

e Set 0 < s < 1. The fractional Sobolev space H*(R™) is the set of functions

2
H'(RN) := {ueL2(RN), / / dedy«)o},
RN JRN

|x _y|N+25

endowed with the natural norm:

1
|u(x) — u(y)® 2
2t s o= (||u||L2(RN) fR y /R ey )

e The space H(2) is the set of functions defined as:
HyQ)={ueH*(RY) | u=0 aein RV\Q}.

The associated norm in the space Hj(£2) is given by Gagliardo semi-norm:

1
|u(x) — u(y)? 2
el = (/RN/H;N v — y|N+2s s Ay

e We consider the space H(£2), defined as

H(Q) = {u e H'RY) : ulo € Hy(RQ), u=0 a.e.in RV \ Q}.
Moreover, using [8, Proposition 9.18], we can identify H($2) with the space H}(Q), if
admits a C'~ boundary 9<2.

We have the following Lemma (see [9, Lemma 2.1] for the proof):

Lemma 1.1 For any s € (0, 1), there exist a constant c = ¢(N, s, 2) such that

2
/ / o) = wo) ddySC/|Vu|2dx forevery ueH(RQ).
RN JRN Q2

|x J/|N+2s
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Then, we have the following remark:

Remark 1.2 In light of the boundary regularity of domain €2, we have:
Hy(Q) C Hy(S).
Next, we introduce the notion of the weak solutions to (S) as follows.
Definition 1.1 A pair (&, v) € H}

loc
holds:
(i) for any compact set K € €2, there exists a constant C(K) > 0 such that

() x H}

1oc(§2) is a weak solution of (S), if the following

u,v>C(K)in K,
(ii) there exists 6 > 1, such that
W’,v") € Hy(Q) x Hy(R),

(iii) for all (¢, %) € HA () x H}(S2) with compact supports contained in Q:

/w_w gey Cs) f / (10 - u) (@) - ¢O) dy
Q 2 RN JRN

|x _y|N+231

= / ki ()u= 1 v=P1 o(x) dx,
* (1.8)

CN,s2) / / (vx) —v) (V) - ¥ () dxdy
RN JRN

2 |x_y|N+282

/VV~V1pdx+
Q

= / ko (x)v=22 u=P2 1fr (x)dx.
Q

Remark 1.3 To understand the notion of weak solutions in Definition 1.1, let us test the
weak formulation (1.8) by functions from the natural spaces H(} (R2). In this case, we cannot
expect (u,v) € H)(2) x HA(Q) for a1, s, B1, B2 large enough (see [2, 31]). For this reason,
we choose suitable test functions depending on the value of the exponents and the pair of

solutions (u, v), e.g., we restrict our test sets to functions with compact support.
For classical solutions to system (S), we provide the following definition:

Definition 1.2 We say that a pair (&, v) is a classical solution to system (S), if (&, v) is a
weak solution pair to (S) and (&, v) € C(RN) N C*().

We define the notion of weak sub-solutions and super-solutions pairs to (S):

Definition 1.3 We say that (&, v) and (%,7V) in H_.

loc

(Q) x H!

loc(€2) are sub-solutions and

super-solutions pairs for (S), respectively, if the following holds:
(i) for any compact set K € €2, there exists a constant C(K) > 0 such that

u, v, u,v>C(K)in K,
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(ii) there exist 01,6, > 1, such that
(u”,¥") € Hy($2) x Hy(2),
and
(@",7") € Hy () x Hy (%),

(iii) the following inequalities are verified

/w.w dpe  CNosD) f f ) —uy) (¢ - 9) | "
Q 2 rN JRN | — y|N+2s1
< / k@7 p(x) dx,
Q
P: (1.9)
/V2~V¢dx+ C(N,Sz)/ / (v(x) = v(y) (w(x)—llf(y))dxdy
Q 2 RN JRN | — y|N+2s2
< / ko(x)v 2~ P2 (%) dx,
Q

and

/Vﬁ~V<pdx+ C(N;Sl)f (u(x) - u(y)) ((ﬁ(@—(ﬂ@’))dxdy
Q 2 RN JRN

e — y N2
> / k@ o) dx,
®): ’ (1.10)
/Q %5y S8 /RN ’ @) - 7)) (V@) - )

|x _ y|N+252

dx dy

> / k(v 2u P2 (x) dx,
Q

for all (¢, %) € Hy(2) x Hy(S2), with ¢, ¥ > 0 in ©, and supp ¢, supp ¥ € Q.
Our first result concerns the non-existence of classical solutions to (S).

Theorem 1.2 Assumingthatk;, i = 1,2 satisfies condition (1.2), we consider the cases where
a1, 0, B1, B2 fulfill one of the following conditions:
(1) Ifar+Pr+a1<1,and as + By > 2.
(2) Ifay + Bo+ap <1, and a; + p1 > 2.
(3) Ifay + 1 +a1 =1, and ay + B2(1 — k1) > 2, for some k1 € (0,1).
(4) Ifay + By +ay =1, and ay + B1(1 — k) > 2, for some ky € (0, 1).
(5) 1fa1+ﬁ1+oz1>1,with¢z1+ﬂ1<%anda2+ W > 2.
(6) Ifaz+Pa+or>1, withay + By < 3 and ay + W > 2.
)

2+1
B2(2-a1)

3 3
(7) fl<ai+ar1<5+ay, 1< s +ay+ 0y <5 +ay, and

Br(2—a)(ay +1) = Br(2—a1)) = (2 —ay)(ar + D)(ay + 1).

Page 7 of 36



Gouasmia Boundary Value Problems (2024) 2024:126

(8)

B1(2-a3)

3
il tartar<; + oy, and

3
Ifl<ay+oay<i+ay 1<

B2 ((2—ai)(az+1) - B1(2—az)) = (2 —ax)(az + 1)(og + 1).

Then, there does not exist any classical solution to system (S).

The following is our second result regarding the existence and uniqueness of a pair of

positive weak solutions to (S):

Theorem 1.3 Assume that oy, a2, p1, B2 are positive numbers that satisfy condition (1.6).

Additionally, assume that k;, i = 1,2 satisfies (1.2).

(1) Ifar + B1+a1 < 1and ay + By + ay <1, then system (S) possesses a unique positive

(2)

(3)

weak solution (u,v) € Hy(Q2) x H} () satisfying the following inequalities for some
C>0:

Cld<u,v<Cdholdin Q, ifai+Pr+ar<landay + Py +ay<1,
and for some k € (0,1)
Cld<u,v<Cd™ holdin , ifai+Pr+ar=landas+ By +ay=1.

Let

_ Q2-a)(az+1) - B1(2-ay) and € = Q2-ax))(ar +1) - Ba(2—ay)
(a1 + (g + 1) = B1 B2 (a1 + (g + 1) = B1 B2

Now, assume that ay + EBy + oy > 1 with a; + B < % and ax + y o + oy > 1 with
a)+ypPa< % Then, the problem (S) has a unique weak solution (u,v) according to
Definition 1.1 and satisfies the following inequalities with a constant C > 0:

C'd" <u<Cd” and C'd* <v<Cdf hold in Q.
Moreover, we have the following Sobolev regularity:

o (u,v) € HY(Q) x HY(Q) if and only if vi < 1 and v < 1.
o (u'1,v2) e Hé(Q) X Hé(Q) ifand only if v;>v} >1,i=1,2,

. o+l Fom _oatl
where Vi = 55 g A V3 = 35y
Let

_2-mh

oy + 1 ’

Ifar + a1 + B1(1 — k2) > 1 for some Ky € (0,1), with a; + B1 < %, and yfs +a; <1
hold, then the problem (S) possesses a unique weak solution (u,v) in the sense of
Definition 1.1, satisfying the following inequalities for some constant C > 0:

Cld" <u<Cd and C'd <v<Cd hold in £, ifyBa+ax<1,
Cldr™ <u<Cd” and C'd <v < Cd"™ hold in Q, ifyBa+ay=1.

Furthermore, v € H}(Q2) and:

Page 8 of 36
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o u € H)(RQ) if and only if v§ < 1.
o IfyBy+ay<1,then ut € HY(Q) if and only if v > v > 1.
o IfyBy+ay=1,then u’t € Hy(Q) if and only if v > vi* > 1.
— 1 _ 1
where Vi := 5505y = 20 e R
(4) Similarly to Part 3 mentioned above, let

and vi*

2-ay- P
oy + 1 ’

3

Ifas + oy + Bo(1 — k1) > 1 for some k1 € (0,1), with ap + By < %, and EBy +ay <1 hold,
then the problem (S) possesses a unique weak solution (u,v) in the sense of
Definition 1.1, satisfying the following inequalities for some constant C > 0:

Cldf <v<Cdf and C'd <u<Cd hold in , iféEfr+a1 <1,
C ™ <y < Cdf and C'd <u<Cd ™ hold in<, iféB1 +ay =1

Furthermore, u € H)(2) and:
o ve HN(Q) if and only if vi < 1.
o IfEB1 +ay <1, then u? € HY(Q) if and only if vy > vi > 1.
o IfEB +ay =1, then u” € HY(Q) if and only if vy > vi* > 1.

o+l

1 sk
Where l)* = L - ﬂl’ld V. M N N B
2 2 2(2-az—p2(1-«1))

T 22-ax-p2)

1.3 Organization of the paper:

In Sect. 2, we investigate the mixed local and non-local elliptic problem involving singular
nonlinearity and singular weights (see Problem (E) below) related to our system (S). First,
we establish a new comparison principle for weak sub and super-solutions of (E) under
some conditions to be defined later, and as a consequence of this, we obtain the uniqueness
result. Next, we collect some results obtained in the paper [3], which play an important
role in this paper. Section 3 is devoted to the proof of our main results (Theorems 1.2 and
1.3). The proof of Theorem 1.3 is divided into two main steps. Firstly, we utilize Schauder’s
fixed-point theorem in conjunction with the sub- and super-solutions method to estab-
lish the existence of a positive solution in conical shells. Secondly, we apply a well-known
argument, originally from Krasnoselsky, to prove the uniqueness of the positive solution
within the same conical shell.

2 Auxiliary results
In this section, we need to introduce and analyze the following mixed local and non-local
equation involving singular nonlinearity and singular weights:

“Au+ (=AY u=Kx)u® u>0 in€ u=0, inRY \ @, (E)
where a >0, 0 <s< 1, and K satisfies the following growth condition:
ad) "’ <Kx) < cdx) ", (2.1)

for any x € 2, and some 8 € [0, 2), with ¢;, ¢, positive constants.
Next, we define the notion of sub- and super-solutions, as well as of weak solution for

(E):
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Definition 2.1 A function u € H}

loc

solution) of the problem (E), if the following holds
(i) for any K € Q, there exists a constant C(K) > 0 such that

() is said to be a weak sub-solution (resp. super-

u>C(K)in K,

(i) there exists & > 1, such that u’ € H}(Q),
(iii) for all ¢ € H}(R2), with ¢ > 0 and compact support contained in Q:

C(N,s) (ux) — u(®)) (@) — ()
2 /]RN /RN

|.7C _y|N+23

/ Vu-Vodx+ dxdy
Q

(2.2)
< (resp. 2)/ K@x)u™ o(x) dx.
Q

A weak solution is defined as a function that serves as both a weak sub-solution and a
weak super-solution of (E).

We point out that in general, the solution described in this definition does not belong
to the space H, 1(Q) (see Remark 1.3). Moreover, it is worth noting here the lack of trace
(2). For this, we adopt the following definition to understand the Dirichlet
datum in a generalized meaning (see [3, 11]):

mapping in H, lOC

Definition 2.2 We say that u <0on 9L, if u =0in RN\ Q and (u—€)* € H}(R), for every
€ > 0. Furthermore, u=00on 02 if u >0and # <0 on 9L2.

Remark 2.1 Condition (ii) in definition 2.1 ensures that the solution fulfills the boundary
datum in the meaning of Definition 2.2 (see [11, Proposition 1.5]).

First, we establish the following weak comparison principle between sub-solutions and
super-solutions for singular elliptic equations (E):

Theorem 2.1 Assumethat0 < <3 3 Letu,veH}

loc

the problem (E), respectively in the sense of definition 2.1. Then u <u a.e. in Q.

(2) be weak sub and super-solution of

Proof We follow the ideas in [11] and [23]. More precisely, let us consider k > 0 and super-
solution u of (E). We now define the following convex and closed set:

K:i={peH)y(Q):0<¢p<ua.einQ}.

Again, we define the functional Ji :H&(Q) — R U {-00, +o0} as follows

Telw) = ( [iwwpas 52 [ b -wol”, dy)— | xe6imas
RN JRN |x— | Q

where the function Gy : R — R is primitive of the following function:

min {s™%, k} if >0,
8k(8) = (2.3)
k if s<0,
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such that Gx(1) = 0. It is easy to observe that:

e Ji is well defined and strictly convex on /.

o Ji is weakly lower semi-continuous on K. Indeed, let {w,}, C K converges weakly to
some w in /C, as well as w,, — win L (), for 1 < r < 2* := 2 Then, we have

N-2
/ |Vw|? dx < liminf / [Vw,|* dx, (2.4)
Q n—00 Q
and
w(x) —w Wn(X) — Wy
/ / | 2 N92| dxdy < liminff / | ( )~ N+g)| dxdy. (2.5)
RN JRN ’x y‘ n—oo  JpN JRN —
1- 6 1 .
Let 6 € (0,1) be chosen later, such that totgE 1, where r < 2*. By using Hardy
r

inequality, the boundedness of {w,}, in H}(£2), and taking into account that Gy is globally
Lipschitz, we deduce that

(W, —wl
fQK(x) |Gwa) = Grwildx = C1 | =25

) wa —w|\ '™ 6 10 1-6-
—Cl/;( ) ) lw,, —w|” d(x) dx

6 1
¥ 7
C, (/ |lw, — w|’dx> (/ d(x)(l_e_ﬁ)ldx)
Q Q

<Csllw, - W”gr(g) since 0 < 8 < 5

— 0, (2.6)

where C;, Gy, C3 > 0 are constants independent of w,, and w. Finally, gathering (2.4), (2.5)
and (2.6), we infer that Jj is weakly lower semi-continuous on K. Hence, based on the
above properties, Ji has a global minimizer wy on K.

On the other hand, for ¢ € wy + (Hé(Q) N LSO(Q)), with 0 <y <u a. e.in Q, we have

/VWO -V —wp)dx
Q

, CN.9) / / (wo(®) — wo() (¥ — wo)(x) — (¥ — wO>(y)) 27)

RN JRN | — y|N+2s
> f K(%) Gy(wo) (W — wo) dx.
Q
Claim 1 For all y € C°(Q2) with ¢ > 0, we have
Q

N C(N,s) / / (wox) = wo(»)) (¥ (x) - w(y)) 2.8)

rN JRN | — y|N+2s

> /K(x) Gy (wo) ¥ dx.
Q

Page 11 of 36
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Indeed, let us consider g € C2°(R) such that
0<g<1inR, g=1lin[-1,1] and suppgC (-2,2).

Then, for any non-negative y € C°(Q), we set

Vi = g(=0 )W and Y= min {wo + 19,7,
forh>1and t>0. It is easy to check that Y, € wy + (Hé(Q) N Lfo(Q)), with 0 < Yy, <
u a.e.in Q. From (2.7), we obtain that

/VWO - V(ne — wo) dx
Q

C(N,s) / / (wo(®) = wo) ((Wne — wo)@x) — (Ve — wo)(»))
RN JRN

2 |x_y|N+2s dxdy

+

> f K(®) Gl(wo) (Ying — wo) dx.
Q

After straightforward computations, we deduce that

2
./ |V (e = wo)|* dox + X9 / / (W = w0)) = Wis = w9 dx dy
Q 2 RN JRN

|x_y|N+2s

= f Ve - V(e — wo)dx
Q

dxdy

+

C(N,s) / W) = i) (Ve = wo) () = (Y — wo)(9))
RN JRN

2 |x _y|N+Zs

_ f K3 Gi(wo) (Y — wo) dx.
Q

This implies that

2
/|V(1//h,t—wo)|2dx+ C(N,s)/ / |(Wrne = wo) (&) — (Yrie — wo) ()| dxdy
Q 2 RN JRN

|x _y|N+25

- /Q K@) (G(¥ne) = Gr(wo)) (e — wo) dx

< / Vs - VWt — wo — )l
Q

+

CN,5) / (0 = a0 (s = w0 = 00 = s = o = 00)))
xdy
2 RN JrN |x _ y|N+2s
_ / K9 Gp(Wne) (Wne — wo — b dx + £ [ / Ve - Vi
Q Q

CN,s) / Vne ) = Y )W) = Yu(y)
it ade dxdy
2 RN JRN

|x _y|N+2s

_ fg K Gty dx] . 29)
Setting

R={u<wy+tyn} U{u>wy+tyy}.
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Then, we have
/ Ve - V(Wi — wo — t)dx = / Vi - V(Y — wo — typ)dx,
Q Q

and

/‘ (W) = Ve ) [V = wo = 09) (%) = (W = wo — 193)(9)] dxdy
RN JRN

|x _y|N+25

_ / / (Wne %) = Vit () [(llfh,z = wo — tYR)(x) — (Yne — wo — fl/fh)(y)] dxdy
{a<wostyn) J {a<wortyy) | — y|N+2s
(Wne@®) = Vi) [(Wne = wo = i) (%) = WYrne — wo — t0)(9)]
+ / / o2 dxdy
{ﬂ§W0+tl//h} {ﬁ>wo+t1//h} |x_)’|
/ (Wne@®) = YD) [(Wne — wo — i) (x) = (Yrne — wo — t0)(9)]
+ i3 dxdy
{E>w0+td/h} {E§Wo+t1/fh} |x - J’|
- (@(x) = u)) [ (Ve — wo — t‘/’h]\){(’;) — (Y = wo — t0R)(»)] dxdy
{ﬁswoﬂx//h} {ESWOHI//;,} Ix —)’| i
(%) = u) [(Yne — wo — t¥n)(x) — (Yne — wo — tn)(9)]
+ TY7oR dxdy
{a=wo+tyy,} J {m>wo+tyy} v — )’l
(@(x) = GW)) [(Wne — wo — E¥n)(®) — (Ve — wo — ti)(y) ]
+ / / o dxdy
{H>w0+t1//h} {H5w0+t1//h} |x - J’|
/ (x) = 7)) (Yne — wo — tY) (%) = (Yne — Wo — En) () d
= xdy.
RN JRN | — y|N+2s
From (2.9), we then obtain
- /K(x) (G (Yne) = Gr(wo)) (Wne — wo) dx < / Vi - V(Ype — wo — ty)dx
Q Q
C(N,s) / (@(x) = u()) ((Yne — wo — EYR)®) = (Ve — Wo — tY1)(3))
= dxdy
2 RN JRN | — y|N+2s

- / K(x) G (Y1) (th,t—wo—“//h)dx"'t[ f Vi - Virpdx
Q Q
N C(I;I, s) / (W) = Yi,e D) (W) = Y(y)) dxdy
RN JRN

|x _y|N+2s

- / K@) Gy(Ynovn dx} ,
Q

From the definition of the function Gy, it is easy to see that u is a super-solution to the

following problem:
-Au+ (-AYu = Kx) G ().

Then, we have

—/1<(x)(G}<(¢h,t)—G}<(Wo)) whde/ Ve - Vipdx
Q Q

Page 13 of 36
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, CW9) / (V) = YD) Wn(x) = Yu())
2 RN JRN

|x _y|N+2s

dxdy — /K(x) G (Y)W dx.
Q

By using the dominated convergence theorem, and again by definition of G, we can pass

to the limit as £ — 0, we then obtain

/ Vo - Vida + _CU;[ :S) f 04000 = WoOV) = 0D
Q RN JRN

|x _y|N+25

> [ K Gymy
Q

So the claim is proved, by taking # — oco. Since C°*(R2) is dense in H}(2). Hence, we
conclude (2.8) is satisfied for any ¥ € H}(2) with ¥ > 0 a.e. in Q.

Claim 2 Forall € >0, we have u < wy + €.
Indeed, since wy € H&(Q) andwy > 0a.e. in Q, the function (u—wy—€)* € H&(Q). Testing
(2.8) with T,,(u — wo — €)*), we obtain

/ Vwg - VT,,(u—wg—€)")dx
Q

C(N,s)
+
2 RN
8 / (wox) = wo) (Tn((1t = wo — €)")(x) — T (1 — wo — €)")(¥)) drdy
RN |x _y|N+25
> /K(x) Gi(wo) Tru((u— wo — €)") dx, (2.10)
Q

such that T,,(s) = min{s,m}. Let now {{,} be a sequence in C;°(2) such that y, — (u —
wo — €)' in HY(Q), and set Yy := T,,(min {(g —wy — €)Y, 1//;}). It is easy to observe that
Vum € HY(RQ) and compact support contained in Q. Then,

/ Vit Vi d + C(N,s) / / ((0) = u(®)) (Y ®) = V() dxdy
Q 2 RN JRN

|x _y|N+23

< f K™ Y .
Q

Therefore, by employing the dominated convergence theorem, we obtain

/ Vi - VTu((u—wo—€)")dx
Q

, CV%.s) / / (®) = u®) (T = wo = ")) = T~ wo — €))(¥)) dxdy
2 RN JRN

|x _y|N+25

< / K™ Ton((u—wo — ) dix. (2.11)
Q
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By subtracting (2.11) from (2.10), while selecting € > 0 such that k > €%, and by using
the definition of g; (see (2.3)), we obtain

/ |V (= wo — )| dx
Q

C(N’S)/ / | T (= wo — €)) (%) = Tyt~ wo — ))9)|
+ dxdy
2 RN JRN

|x _y|N+25

< / K@) (™ = G(wo)) Trn((1 — wo — €)") dx
Q
= /Q K@x)(G(w) — G (wo)) Tru((u— wo — €)*)dx < 0,

passing to the limit as m tends to infinity, and using Fatou’s lemma, we obtain

/ |V (1~ wo —e)+|2dx
Q

+C(N,s>/ / (= wo — €)* (@) — (- wo —€)* ()|
2 ]RN ]RN

|x_y|N+Zs dxdyfo
This implies that
(u—wg—€)"=0a.e. in Q.
Thus, u < wp + € <u + ¢, passing to the limit as € — 0 it follows that ¥ <u. O

Remark 2.2 'We have the following observations:
(1) If u,u € H)(R), the proof of Theorem 2.1 becomes very easy when we consider
(u —u)* as a test function in equation (2.2).
(2) If0o<B< %, then there exists a unique weak solution of the problem (E).

Furthermore, we need to consider some of the recently obtained results in the paper [3].
To be more specific, the authors have established the non-existence, existence, unique-
ness, and Sobolev regularity results of the problem (E), under the assumption (2.1) of the
function K, within a specific range of values for « and g. The following theorem summa-
rizes the results that will be utilized in the present paper, where the following exponent is
employed:

pioe 2L B e0,2)
22-p)
Theorem 2.2 We have the following

(1) Ifa>0,and o + B < 1. Then, problem (E) possesses a unique positive minimal

solution u in the following sense:
o ucH\Q).
o forany ¢ € HY(Q):

/ Vit Vods s SO / / (st~ ) (60 ~9) ,
Q 2 RN JRN

|x _y|N+2s

= / K@)u™ o(x)dx.
Q
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Furthermore, u satisfy the following estimates:
Cld<u<Cdholdin Q if a+B<1,
and for some k € (0,1)

Cld<u<Cd™ holdin Q if a+p=1

(2) fa>0,and o+ B >1with B < ; Then there exists a unique positive minimal
solution u of (E) in the following sense:
e ucH, (Q).

o there exists 6 > 1 such that u’ € H}(RQ).

e for every compact subset k C Q there exists a constant C(K) > 0 such that u > C(K)
inK.

o forevery ¢ € Hy(2) in case v* < 1, and with compact support contained in Q in
case of v* > 1, we have:

/VM-V(pdx+ C(N,S)/ / (u(x) — u(®)) (p(x) - p(»)) dxdy
Q 2 RN JRN

|x _y|N+2$

= / K@)u™ o(x)dx.
Q

Moreover, we have the following Sobolev regularity:
o u € H)(Q) if and only if v* < 1.

o u’ € HY(Q) if and only if v > v* > 1.

In addition, u satisfy the following estimates:

2-8 2-

C_lda+1 <u< Cda+

=

l

hold in Q.

(3) If B =2, then there is no weak solution to (E) in the sense of (1) and (2).

Proof See Theorem 2.6, Theorem 2.7, Theorem 2.8 and Theorem 2.9 in [3]. From Re-
mark 2.2 - (2), we can infer the uniqueness results. O

Remark 2.3 We can conclude the results of non-existence in Theorem 2.2-(3) for the prob-
lem (E) by a similar proof in [3, Theorem 2.9] when K satisfies the following condition:

adx) P <Kx) <cydx)™ forany xe,

where 2 < B; < B, and ¢y, c; are positive constants. Precisely, by contradiction, we suppose
that there exist a weak solution u € HIIOC(Q) of the problem (E) and 6, > 1 such that z%

H;(R2). Now, we can choose I' € (0,1) and By < 2 such that a function K’ satisfies the
growth condition:

GTrdx) ™ <TK'(x) <c,Tdx) P <c1dx)™™ <K(x) foranyxe,

where ¢}, ¢; > 0 and the constant T is independent of S, for 8y > B > 0. Then, we can
replicate the proof presented in [3, Theorem 2.9] to obtain the desired contradiction.

Page 16 of 36
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3 Proof of the main results

First, we prove the non-existence of classical solutions (see Definition 1.2) to problem (S).
Before embarking on this, we need to establish the following lemma regarding the behavior
of classical solutions.

Lemma 3.1 Let (u,v) be a pair of positive classical solutions of system (S). If a1,a, € [0, %),
then

u,v>cdx)in S, (3.1)
where c is a positive constant.
Proof Let (u,v) be a pair of classical solution of the system (S). Then, we have
“Au+(=A)'u>crki(x)u in ,
and
—Av+ (=A)2v > ka(x) v ™ in Q,

for positive constants ¢; and ¢, that are small enough. We now consider the following

problems:

—Awi + (A1 wy = ¢ ki(x) WI‘”, wi>0 in€; w; =0, inRV \ @,

—Awy + (=N)2wy =y ky () Wy, wy >0 in Q wy=0, in RV\Q.

Hence, by using Theorem 2.2 (see also [3, Lemma 4.6]), there exists a unique positive
minimal solutions w; and w; of the above problems, respectively, with

Wi, Wy > kd(x) in €,

for k > 0. Since aj,a; € [0, %), and by applying the comparison principle (Theorem 2.1),
estimates (3.1) follow. O

Using weak comparison principle (Theorem 2.1) along with Theorem 2.2, we can derive
the following proposition concerning sub-solutions and super-solutions to the problem

(E):

Proposition 3.2 Let u be a sub-solution of (E), and u be a super-solution of (E) in the
sense of definition 2.1. We have the following
o If B+« < 1. Then, there exists a positive constant Cy, such that

u(x) < Crd(x) and u(x)> Ciltd(x) in Q.
o If B+« = 1. Then, there exists a positive constant Cy, and k € (0, 1), such that

ux) < Cod®)'™ and ux) > C;td(x) in Q.
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e IfB+a>1withf< % Then, there exists a positive constant Cs, where
2.8 _ 1, 2B
ux) < Csd(x)esT  and u(x) > C3 d(x)e+T in Q.
We are now ready to present the proof of non-existence results:

Proof of Theorem 1.2 Let (u,v) be a positive classical solution to system (E). According to
the statement of Theorem 2.2, we classify the following cases:

Case (1): Assume that a; + 1 + 3 < 1. First, by using Lemma (3.1), we can conclude that
u is a sub-solution of the following equation:

Liw=Md P yw™, w>0 inQ w=0, inRV\Q,

for some constant M; > 0 large enough. Next, from Proposition 3.2 combined with
Lemma 3.1, we have

Cld P (x) <kyx)u ™ <CdP(x) inQ,

for some constant C > 0. Then, from Theorem 2.2 - (3), the following problem:
Lov=lko@®u v, v>0 inQ v=0, in RV\Q,

has no weak solution if a, + B, > 2. Similarly, we arrive at the same conclusion for Case

(2).

Case (3): Let a; + B1 + @1 = 1. Again, from Lemma 3.1 and Proposition 3.2, the problem:

Lov=lko@u v, v>0 inQ; v=0, in RV\Q,

with the following condition: for some «; € (0,1)

Cld 2P0V < fox)u® <Cd2P(x) inQ,

has no weak solution if a, + 8(1 — k1) > 2, taking into account Remark 2.3. Additionally,
the same conclusion applies to Case (4).

Case (5): Assume that a; + B + @1 > 1, with a; + ;1 < % Using Lemma (3.1), we get u is
a sub-solution of the following equation:

Liw=Moyd™ " Plix)w™, w>0 inQ; w=0, inRV\Q,

such that M, > 0is a constant large enough. By combining Proposition 3.2 with Lemma 3.1,
we obtain

-1 —ﬂz—ﬂz(z_ali_w -B —ay—p .
Ccd atl J(x) <k x)u?<Cd P ing,
for some constant C > 0. Then, from Remark 2.3, the following problem:

Lov=lkuv®, v>0 inQ v=0 inRY \ Q,

has no weak solution if ay + W > 2.
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Analogously, we obtain the same results for Case (6).
Case (7): Setting M = max {Vﬂl} > 0, one can easily check that u is a super-solution of
Q

the following equation:
Liw=M"'kxw*, w>0 inQ w=0, in RN \ Q.

Since a; + @1 > 1 and a; < %, by Proposition 3.2 there exists C > 0 such that

2-a
u(x) > Caf“l_+ll () holdin.

Therefore, v is a sub-solution to the following problem:

2(2-ay)

B
Low=CP2d” T () ky(x)w™, w>0 inQ; w=0, inRV\Q.

B2(2-a1)

1 tar o> 1 and £2-2) +dy < %) and Lemma 3.1

By using Proposition 3.2 (since il

there exists a positive constant C > 0 such that

 B1(@-a)(e1 +1)-B3(2-ay))

cld (@D M) <k@ v <Cd P (%) inQ.

Then, from Remark 2.3, the following problem:

Liv=kixvP u™, u>0 inQ wu=0, in RN\Q,

az)(@1+1)=pr(2-a1))
(a3 +1)(ag+1)

Analogously, we obtain the same results for Case (8). O

has no weak solution if 212~

+a; > 2.

Next, we establish the existence of a pair of positive weak solutions by employing
Schauder’s fixed-point theorem in conjunction with the sub-solutions and super-solutions
method. In addition, we demonstrate the uniqueness results by applying a well-known ar-

gument of Krasnoselsky. Precisely, we have

Proof Theorem 1.3 We divided the proof into 2 parts.

Part I: Existence of a pair of positive weak solutions.

According to Theorem 2.2, we segment the proof into four cases based on the boundary
behavior of the weak solutions to the problem (E). Indeed, we have:

Case 1: Firstly, if a; + 1 + a1 < 1 and ay + B2 + a3 < 1, then by applying Theorem 2.2 - (1),
there exist unique solutions ug, vy € HA(S2) for the following auxiliary problems, respec-

tively:

Liug =d Pr ok () ug™, u>0 in € u=0, in RV\Q,

Lovo = d P2 (0)ka(x)v;™2, v9>0 in € 1=0, in R\ Q.
Moreover, in this case g and v, satisfies the following inequalities for some constant C > 0:

C'd < uy, vy < Cd hold in Q.
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Now, we define the following convex set:

(u,v) € Hy(Q) x Hy(Q);
H:=

miug <u<Miuy and mrvy<v<Msyvy

Here, we define constants 0 < m1; < M; < 00 and 0 < m1, < M, < 00, which will be deter-
mined later. These constants are chosen in such a way that the conical shell H remains
invariant under the following operator (see (1.3)):

T : wv)— Twv) = (Ti(v), o) : H — Hy(Q) x Hy (),

thatis 7(H) C H.

Before confirming this, we need to first verify:

o (7 is well-defined). Indeed, consider an arbitrary pair (&, v) in #. Then, by applying
Theorem 2.2 -(1), problems (1.4) and (1.5) possesses a unique solution 7;(v) € H}(2) and
T2(u) € H}(R), respectively.

o (H is invariant under 7). In fact, based on Remark 1.1 - (2), we only need to verify the
following inequalities:

TiMyvg) = myug  and  Th(myug) < Myvy (3.2)
To(Miug) = myvy  and  Ti(mave) < Miug. (3.3)
To establish these inequalities, it suffices to demonstrate that (m1;ug, m,vy) and (M;uy,
Myvyp) satisfy the conditions of being sub-solution and super-solution pairs for (S) as de-

fined in Definition 1.3 (refer to Theorem 2.1). To verify this, we can perform the following
straightforward computations:

C(N,sl)/ f (myuo(x) — miuo()) (9(x) — ©(3))
2 RN JRN

\% -Vod dxd
/Q (mlu()) pax+ |x—y|N+251 X y

< P M / ko () (10 (Mavo) ™ () i,
Q

C(N,s) / / (mavo(x) — mave () (¥ (%) = ¥ ()
RN JRN

2 |x_y|N+2sg

/ V(mavo) - Vipdx+ dxdy
Q

<m*'ct M / ko () (mavo)™*2 (Mako) ™2 4 (x) dx,
Q

and

C(N,s1) / / (Myuo(x) — Miuo() (9(x) — 0())
]RN ]RN

V(M -Vodx+
/Q (Miug) - Vodx 5 - y|Ne2s1

dx dy

> MO / kG (Mvo) (myvo) 1 () di,
Q

C(N,sZ)/ / (Mavo(x) = Mavo()) (¥ () = ¥ (7))
2 RN JRN

V(M -Vyd dxd
L ( ZVO) Iﬁ X+ |x—y|N+252 xay

> MP CPrml? / ko () (Mavo) ™2 (myuo) P2 Y (x) dx,
Q
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for all (¢, V) € Hy(RQ) x H}(RQ), with ¢, ¥ > 0 in Q. In light of inequalities (3.2) and (3.3),
we can choose m; = B™!, My = B, my = B™¥ and M, = BY, where B € [1; +c0) is a sufficiently
large constant and 7 is defined in Remark 1.1-(4). Then, we obtain:

ch < mI(oz1+1)M;ﬂ1 ie., ch < B(a1+1)*f/31,
Cch2 < m;(azd)MIﬂz ie, ch < Br(a2+1)_ﬁ2,
P < M ie., Ch < Bla+h-h1
P < M3 ie. Chr < preat-pr,

Hence, by using the inequalities (1.7), we conclude that all inequalities above are satisfied
for B € [1; +00) large enough.

e (7 is a compact operator). Indeed, we consider a bounded sequence {(u,,v,)}, C
Hg ()% Hy (%) L2(9)
H. Then, up to a sub-sequence, that (u,,v,) — (u,v), (U, v)) — (u,v) and

(Un(x), vu(x)) — (u(x),v(x)) a.e. in Q. On the other hand, we have T (u,,v,) = (T1(v,),
T2(u,)). Now, our current focus is to prove there is a sub-sequence denoted again by
{(Ti(vw), Ta(u,))},, that converges in the H}(Q) x H}(R2) sense to some (i1, ) € H} () x
HAQ), ie.,

Jim (| 7iv) =it 1 gy =0 and - lim [ Ta(us) =] 1 ) = 0. (3.4)

First, from Theorem 2.2 - (1), for all (¢, ) € H}(R2) x H}(S2), we have:

/ VTi(va) - Vodx
Q

+C(N,sl)f / (Tiv)@) - Tiv)®) (9(x) - 0())
2 RN JRN

|x_y|N+231 dxdy

= / ki(x) v, T (v,) ™ () dix.
@ (3.5)

/ VT (u,) - Vi dx
Q

. C(I\;Sz)/ f (Ta(un)(x) = To(u) (7)) (W(x)—WO’))dxdy
RN JRN

|x _y|N+232

= / ko () ;P2 T (1) ™2 ¥ (x) dix.
Q

By choosing (¢, V) = (T1(v,), Ta(un)) € Hy(Q) x H}(S2), we obtain

C(N,s1) / / | T v @) - T 0| p
xdy
RN JRN

2 |x_y|N+2S1

/ IVTi(v,)I* dx +
Q

< C/ d(x)" 1P+l gy = const.
Q

2
/|V7§(Mn)|2 dr s C(N,Sz)/ /' | T2()(x) = T () )| dxdy
Q 2 RN JRN

|x _y|N+252

< C/ d(x)"2"2P2*1 gy = const.,
Q
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where C > 0 does not depend on n. Then, we deduce that {(71(v,), T2(4,))}, is uni-
formly bounded in H(}(Q) X Hé(Q). Hence, up to a sub-sequence, that (71(v,), T2(u,)) —
(i1, v) in H}(Q) x H}(RQ), (Ti(vw), Ta(u,)) — (&, V) in L'(Q), for 1 < r < 2*, and (T1(v,)(x),
To(u,) (%)) — (it(x), ¥(x)) a.e. in Q. Also

(VTiv)}n» (VTa(t)},, is bounded in LX(Q),

{ i@ - Tivn)0) } is bounded in L2(RN x RV),

{ Ta(un)(%) _1\7:225(?")0/) } is bounded in L2(RN x RM).

lx—yl 2
By the point-wise convergence of 7;(v,) to # and 7T3(u,) to ¥, we obtain

TiE)@) = Ti)@) | #(x) ~ ily)
N+2s1 N+2s1
le—yl 2 lx—y| 2

a.e. in RN x RY,

and

To(uu)(x) —lézfzun)(y) N v(x) - All/(zyz @ e in RN x RN
lx—yl 2 lx—yl 2

It follows that

lim {/ VTi(v,) - Vedx
Q

C(N,s1) / (Ti(v)®x) = Ti(v) (@ (x) — @) }
" dx dy
2 RN JRN |x _y|N+231 (3 6)
= / Vi -Vodx
Q
. C(N,Sl)/ (#(x) — w(y))(p(x) — 9(9)) dxdy,
2 RN JRN | — y|N+251
and
lim {/ VT (u,) - Vi dx
n—0o0 Q
+C(N,32) / (T2 () (%) = T2 ()W () — Y (1) dxdy}
2 RN be o (3.7)

:/ VvV dx
Q

L CWNs) / (V&) = v &) = ¥ ()
2 RN JRN

|x _y|N+232

dxdy,
for every (¢, V) € C2°(2) x C°(R2). Moreover, one has,

k1) v, A T ()™ ()| < Crd(x)™ 171 € LY(Q),
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and
ko () 1,2 T (1) ™2 Y ()| < Cod()™27P27%2 € L1 (Q),

where C; and C, are positive constants, and for (¢, ¥) € C2°(2) x C(R).

lim /kl(x) v;’ngl(v,,)’“l ox)dx = //q ) v P I o(x) dx, (3.8)
n—00 Q Q
lim [ ky(x) u;ﬂz’ﬁ(un)’“z Y(x)dx = / Ky () uP2072 r (x) dix. (3.9)
n— 00 Q Q

By combining (3.6)—(3.8), and (3.9), and passing to the limit in (3.5) as » — 00, we obtain

C(N,s1) / / ((x) — () (p(x) - W)) ded
2 RN JRN 4

/S;Vu.Vgodx+ = y N

= / k(%) v P i p(x) dx,

/W.V dxa C(NSz)/ / (1) =) (¥ (x) - I/f(Y)) dxdy
Q RN JRN

|x y|N+252

(3.10)

= / k(%) w2572 Y (x) dix.
Q

By density arguments, we get (3.10) is satisfied for any (¢, V) € H&(Q) X H&(Q). Now,
subtracting the equations (3.5) and (3.10) with the following test functions:

(0, %) = (Ti(vn) — i1, To(uy) — V) € Hy () x Hy (),
we obtain

[ v Tio) - ax
Q

+C(stl)/ / [(Ti(v) = )(x) = (Ti(v) = u)(y)\
RN JRN

|x y|N+2S1

- / k@) [P T ™ —v B ] (Titv,) - i) d,
¢ (3.11)

f |V (Ta(un) - 9)|” dx
Q

+C(N,s2)/ / (T () = )(x) = (Toua) - V)()/)I
RN JRN

|x y|N+2s2

= / ko) [1,P* To(u) ™2 = w2572 ] (To(u) — V) d.
Q

In order to pass to the limit in the right-hand side of equations in (3.11), we use the
boundary behaviour of 71(v,,), To(4,), Uy, v, i, . Indeed, for vy, vo € (0, 1), such that v; <
l—a;—pB1—a, vy<l—ay—By—ay and 1_2”1 +‘r’—i+—-1and Lov +‘;—§+i=1,
where r1,r, < 2*. Hence, from the Holder and Hardy inequalities and boundedness of
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(i), To(un))}, in Hy(2) x Hy(£2), we obtain

/ k@) [V, Tia) ™ v P a | (Th(va) - ) dx
Q

_ 1-v
< C/ Tivy) -1 |71(V,,)—11|v1 dl—Vl—al—,Bl—Oll(x)dx
al dx)
~ || 1-v1 ~ ||Vl I (1-vi—a;—p1-a1) ZII
§C||71(VW)_M||H3(Q) |71(Vn)_u L'(Q) /le 1mAHmPImL (x)dx — 0,

and

f k() [16,7> To(u) ™% = P92 ] (Ta(u) - V) dx
Q

—cf
Q

< C| ) = 7|72 | Totun) - ¥

HY ()

1-vy

PO =8 ) 3] @

d(x)

1
5

V2 ly(1-vg~az—fa—az)

2@ ( /Q d (x)dx) — 0,

for some constant C > 0. Then (3.4), follows from taking the limit as # — oo in (3.11), that
is the compactness of the operator 7.
e (7 is a continuous operator). Indeed, let {(,,v,)},, C H be an arbitrary sequence ver-

ifying:

(U, vy) = (Ug,vo) in H(}(Q) X H(}(Q) as n — oQ.
It follows that, up to sub-sequence,

(uy,vy) = (ug,vo) ae.in 2 x Q as n— oo.

We know that T (u,,v,) = (T1(v,), T2(u,)) and T (i, vo) = (T1(vo), T2(149)). On the other
hand, since 7 is compact, there exists a sub-sequence denoted again by {(71(v,,), T2(ux))},,

such that:
(T V), T2 () — (i1, V) in H} () x HY(Q),
(T1(vn), T2 () — (i1, V) in L2(Q) x LX(Q),

(ML), To(uy) (%)) — (G(x), P(x)) a.e.in Q x Q.

Combining this fact with the argument used in the previously mentioned proof of the

compactness of 7, we can pass the limit to the following weak formulations:

C(N,s1) / / (Tiv)®) - Tiv)®) (9(x) — 9(»)) Jrd
RN JRN y

2 |x_y|N+251

/ VTi(v,) - Vedx +
Q

= / ki () v,Pr T (v,) ™ (x) dix,
Q

C(N,Sz)/ / (Ta(un) @) = To(u)(9)) (W(x)—xﬁ(y))dxd
RN JRN )

2 |x_y|N+252

/ VT (u,) - Vi dx +
Q
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= / Ko () 1, P2 T (1) ™2 ¥ (%) dl,
Q

to obtain
/Vﬁ-V(pdx CIN, 51)/ / (iux) - i1(»)) (¢(x) - 900’)) dxdy
Q RN JRN o — y[N+251
= / k1 (x) vgﬁ LI o(x) dx,
¢ - (3.12)
/WV o d + CO052) / / (0@ -0) Y@ -v ) | dxdy
Q 2 RN JRN

|x y|N+252

- / ley () 1,972 r (x) dlx,
Q

for all (¢, ) € C°(Q) x CX(R). Since C>°(R) is dense in H}(2), we then conclude that
(3.12) is satisfied for any (¢, ¥) € Hy(Q) x H} (). Thus, by uniqueness, it follows from
Theorem 2.2 - (1) that we obtain 7 (g, vo) = (&, ), which implies that 7 is continuous.
Finally, by Schauder’s fixed-point theorem, it is easy to see that 7 has a fixed-point in #,
which is a pair of positive solutions to the system (S).

The remaining situations in (1) (Theorem 1.3) will be considered in a similar way to case
1. In order to do this, we will indicate the method by which we select the convex set that
enables us to apply Schauder’s fixed-point Theorem:

Ifa; + B1+a1 = 1and ay + B2 + a2 = 1. In this case, we will address the following problems:

Liug =d P 0k () uy®™, up>0 in Q5 up=0, inRV\Q,
and
Lovo = d~P2(x)ky(x) ™%, v >0 in€; =0, in RV Q.

Then, from Theorem 2.2 - (1), there exist unique solutions u, vo € H; (€2). Moreover, there
also exist k1, k, € (0,1) and C > 0 such that

Cld<uy<Cd™ and C'd<vy<Cd™ holdin Q.
We now consider the following problems:

Liuy =d TPk () u]™, w >0 in € u;=0, in RV\Q,
and

Lovy =d V2 () (x)v*?, v >0 in @ v =0, in RV\Q.

Again, from Theorem 2.2 - (1), there exist unique solutions u,v; € H&(Q). Moreover, one
has for some constant C > 0:

Cl'd<uy, v, <Cd holdin Q.
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We now define

(u,v) € Hy(Q) x Hy(Q);
H =

miu <u<Muy and mpvi<v<M,vy
Here, 0 < m; < M; <00 and 0 < my < M, < 0o are those given in case (1), with
my diam “1(Q) < M; C?>  and  m, diam “2(Q) < M, C2.
Ifa; + B1 + a1 <1and ay + B, + oy = 1. So, we can define the following convex

(u,v) € Hy(Q) x Hy(Q);
H = ’

mu <u<Muy and wmrvo<v<M,vy
where ug, vy and u; in H(}(Q) are weak solutions of the following problems, respectively:

Laug = dP (x)ki (%) uy™, uy>0 inQ up=0, in RV\ ©,

Lovo = d P ()ka(x) g™, >0 in Q5 =0, inRV\Q,
and
Liuy =d TP k() u™, w1 >0 in Q w;=0, in RV\Q.
Moreover, there exist k5 € (0,1) and C > 0 such that
Cld<upuy <Cd and Cld<vy<Cd™ holdin .
The constants mj, My, my, and M, are the ones given in case 1, with
my diam “2(Q2) < M, C2.
Now, if we interchange u and k; with v and k; in (S), respectively, and apply the same
approach, we obtain a similar resultif a; + §; + @1 =1 and ay + B2 + a3 < 1.

Case 2: We first start with the following auxiliary problems:

Lo = d~P1(x) ki (x) uao”, up>0 in € wuy=0, in RN \ @,

Lovo = d7"P2 (%) k(%) V"%, 1>0 inQ; =0, in RV\ @,

where 0 < £ < 1and 0 < ¥ < 1 are some suitable constants to be determined. In this case, if
a; +&EBy +a1 > 1witha; +£6; < % and ay + B2 + ay > 1 with ay + Y8, < %, then there are
unique minimal weak solutions i, vo € H}} () to the above problems, respectively (from
Theorem 2.2 - (2)). Furthermore, there exists a constant C > 0 such that:

1 2-a1-€B1 2-a1-£f1 1 2-ax-ypy 2-ax-ypy
C'd 21 <yy<Cd 91 and C'd 1 <y,<Cd %1 inQ.
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Set
2—a;-&p 2—ay-yha
y=——"- and &=—""—-"7"=—,
o] + 1 Oy + 1

The following equivalent system is derived

vy +1)+£&61=2—ay,
(3.13)

yBa+&(@y+1)=2—ay.

Thanks to the subhomogeneity condition (1.6), the linear system possesses a unique solu-
tion. Precisely, we have

_@2- ar)(ay +1) = B1(2 - ay) and £ = 2 -ax))(ay +1) = (2 —ay)
(a1 + D)oz +1) = B1 B (01 + Dz +1) = B1fa

We now define

” (u,v) € Hp () x Hy, (Q);
miug <u<Miuy and myvy<v <M,y

By following the same arguments as in case 1, we deduce that 7 is well-defined and that
T (H) C H. It remains to prove the continuity and compactness of 7.

e (7 is a compact operator). For this aim, we consider a bounded sequence {(u,,v,)},, C
Hioo ()X Hioo () ()

oc loc(

L
‘H. Then up to a sub-sequence, that (u,,v,) (u,v), (y,vy) = (u,v)forl <
r < 2* and (u,,(x), v,(x)) — (u(x), v(x)) a.e. in Q.

By definition of the operator 7T, we have T (u,,v,) = (T1(vy), T2(4,)). Now, from Theo-

rem 2.2 - (2), we have (71 (v,), To(u,)) € H (Q) x H,.

loc

(R2) satisfying:

Tiwvn), Ta(u,) > C(K)  forall K &L, (3.14)

(Ti(v)?! € Hy(Q) and  (Ta(u,))’ € Hy(R),

for some 6 > 1, and C(K) > 0 does not depend on # (since T1(v,,), T2(u,,) € H), with

/ VTi(n) - Ve dz
Q

+ dxdy

C(N,s1) / / (i) @) = T ) () — (1)
RN JRN

2 |x_y|N+251

= / ki) v,P T (v) ™ (x) dix,
@ (3.15)

/ VT3(un) - Vi dx
Q

+

C(N,Sz)/ / (Ta(un) () = Ta(un)(9)) (Iﬁ(x)—lﬁ@))dxd
RN JRN i’

2 |x_y|N+232

= f ko () 1, P2 To (1) ™2 ¥ (%) dlx,
Q

for all (¢, V) € H3(Q) x H}(K2), with compact supports contained in €.
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Now, we distinguish two cases:

g+l ap+l .
o If 550 =5y = 1and 5572= < 1. Let us insert

(@ V) = (Ti(vn), Ta(un)) € Hy () x Hy(Q),

as a test function in (3.15), we can derive
/ IVTi(v)I* dx < C/ d(x) 1 ~=Dy=A gy - const.
Q Q
/ IV To(u)|? dx < C/ d(x) 2~ @"DE=P2Y gy = const.
Q Q

where C > 0 does not depend on 7.

By combining this fact with the same argument used in case 1, we are able to pass the
limit in (3.15). Again by repeating the proof of case 1, compactness of the operator T
holds.

o If #ﬁ*fh) >1and #jm) > 1. In this case, we have (Theorem 2.2)

(Tivn)", (Ta(un))") € Ho(R2) x Hy (),

. ay+1 o+l
if v > max { 22-a1-2B1)’ 22-ar—yP2) }

Let now {(¢m, ¥m)}, be a sequence in C°(2) x C°(£2), such that
(@ Ym) = (T1v))" (Ta(un))*) in H(Q) X Hy(R).
Setting (@y,m Yum) := (Min {(T1(vi))", @}, min {(T2(u,))", ¥ }). It is easy to observe that

(P> Yim) € H&(Q) X Hé(Q) and compact supports contained in Q. Then, by testing the
weak formulation (3.15) by (¢y,m> ¥,m), We obtain

/ Vﬂ(vn) : V(;0;'1,;41 dx
Q

, Cds) / /‘ (Ti)®) = TIV)B)) (Pnm() = @)
2 RN JRN

|x_y|N+2s1 dxdy

- f K@) VP TI00) ™ @nom(6) dx.
Q

f VB(M,,,) . VIpn,m dx
Q

+ C(]\; 52) / f (E(Mn)(X) - 75(”;1)0’)) (wn,m(x) - Wn,m(y)) dxdy
RN JRN

|x _y|N+252

= / Ko (%) 1,2 T (1) ™2 Y (%) dix.
Q

By applying the dominated convergence theorem, we conclude

v / VT ¥ | dx < / Ky (O Tr (v v
w+1)2 Jg Q

< C/ d(x)y" 1 v@=v-ki8 gy - const.
Q
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m/ ’V(B(un)) z dx</k2(x)7’2(un) ag+v _IBde

<C / d(x)"=8@)=P2y gy = const.
Q

Hence l(Tl (vn))% } and l('7§(l,ty,))vT+1 } are uniformly bounded in H&(Q). On the other
hand, for all K € 2 (sene (3.14)), we have "

f VTl dx < C(K) / (T V(T () dx
K

C1 (K)
w12

/ V(T Cdx < G,

IV(Ta(un)* dx < C*V(K) / (Ta(un))" ™t IV (To ()| dx
K

cl Y(K)
w2

x<C0’

| vy |

where Cy > 0 is independent of n. Then, we deduce that {(71(v,), T2(4,))},, is uniformly
bounded in H} () x H

loc loc

{(T1(v,), Ta(u,))},, such that:

(2). Hence, there exists a sub-sequence denoted again by

(Ti V), Ta(ttn)) — (i1, D) in Hy\, (2) x Hy (),
(Ti (), Tatan)) — (i1, V) in L{, (2) x L}, (),
(T1(v)x), T2 (u,)(x)) = (T6(x), V(%)) a.e.in Q x Q. (3.16)

Furthermore, by using Fatou’s Lemma, we have

A v+l 2
/‘VuT
Q
/‘VVT

where C is a positive constant. On the one hand, from (3.14) and based on the point-wise

v+ 2
dx < liminf / VT

n— 00

dx<C

dx<11m1nf/ ‘V(Tz(un)) z

convergence (3.16), exists a constant Cx > 0 for all K € 2, where:
u(x),9(x) > Cx >0 forae xeKk.

Now, we can pass to the limit in the left-hand side of (3.15) by employing the weak con-
vergence property and following the proof outlined in [11, Theorem 3.6, p. 240-242]. For
the right-hand side, by using Hardy’s inequality, we obtain for ¢ € H}(2) and ¥ € H3(Q2),
with supp ¢, supp ¥ € Q:

_ - —a1-£p P
/ kl (x)vnﬂlﬂ(vn) o] q)dx < CSUpp(p / dl a1-§p1 ;dx < CSUPPW ”(/J”Hé(gz) ’
Q suppg

and

/ kz(x)u;ﬂsz(un)"‘” Ydx < Couppy / dl-a-vh %dx < Couppy 1V ||Hé(Q)'
Q

suppyr
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Now, by using Vitali’s convergence Theorem, we conclude that

C(ngl)/ / (f(x) - i(y)) (w(x)—fﬂ(y))dxdy
RN JRN

Vi-Vodx+
,/Q ¢ 2 | _y|N+251

- / @V P o) dx,
Q

/v Vydt C(N,Sz)/ / (V@) - () (W(x)—W(y))dxdy
Q RN JRN

2 |x_y|N+252

(3.17)

<>

- / k(%) w2972 Y (x) dix,
Q

for all (¢, ¥) € H}(Q2) x HA(R), with compact supports contained in 2. Now, by subtract-
ing (3.15) from (3.17) with test functions

(Tiw) = )97, (Ta(un) = DYT)
with (@1, Y1) € C(R2) x CX(R2), we obtain

f V(Ti(vn) - DV((Ti(v) = 07 dx
Q

CWN,s1)
+

2
[(Ti(v) = D)(x) = (Ti(v) = D] [(Ti (Vi) = D)) (®) = (Ti(va) — DD ]
X Ny dxdy

e — y[A251
= / ki) [v, i)™ = v P i | (Ti(va) - e} dx,
Q

/ V(T3(t) = HV(Tattn) - 02 dx
Q

C(Nr SZ)
"
2

/ / [(T2(u) = M) = (Ta () = )] [(Ta ) = DY) = (Ta(a) = DY)
X dxdy
RN JRN

|x _ y|N+252

= [ ka(x) (14,7 Ta(un)™* — w972 (Ta () = M7 .
Q
By Young’s inequality and after straightforward computations, we deduce that
1 Av|2 2
5 | VT -] ¢idx
2 Jq

= Csuppwl I:Hﬂ(vl’l) - I:lHLZ(Supp(pl) + Hﬂ(vn) - IZHEZ(SUPPWI)] —0asn— o0,

22
Tdx

1
3 / V(T () - )
Q

< Cappin [ 172000 = 7 pogugopnr * 17200 = ¥ gy | = 028 1 = o0.

Then, the sequence {(7}(1/,,) — i, To(uy,) - it)}n converges in HIIOC(Q) X HllOC(Q), as desired.
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e (7 is a continuous operator). Indeed, let {(u,,v,,)},, C H be an arbitrary sequence ver-
ifying:

(U Vi) = (o, o) in Hp () x Hi (Q)  as n— oo.
It follows that, up to sub-sequence,
(uy,vy) = (ug,vo) ae.in 2 x Q as n— oo.

We know that T (u,,v,) = (T1(v,.), T2(u,,)) and T (ug, vo) = (T1(vo), T2(u0)). On the other
hand, since 7 is compact, there exists a sub-sequence denoted again by {(71(v,)), T2(ux))},,

such that:
(Ti ), Ta(un)) — (@1, 9) in H},(Q) x Hj, (),
(T V), Taun)) — (i1, D) in L*(Q) x LX(Q),

(Tivn) (), Ta(un)(x)) — (@(x), V(x)) ae.in Q x Q.

Now, by combining this fact with the argument used in the above proof of the compactness
of the operator 7, we infer that there exists a constant C(K) > 0 for any K € €, such that

u,v>C(K)in K,

and there exists 6 > 1, such that 2,7’ € H}(Q), where

/Vﬁ-V<pdx+ C(N,S1)/ f (i) = iu(y)) ((P(x)—w(Y))dxdy
Q 2 RN JRN

|x _y|N+251

- / ky () vgP i o(x) dix,
Q

/V0~V1pdx+ C(N,Sz)/ / () - 9(») (lﬂ(x)—lﬂ(Y))dxdy
Q 2 RN JRN

|x _y|N+282

= / Ky () g2 072 (%) .
Q

for all (¢, ¥) € H}(2) x H}(R2), and suppy, suppyr € Q. Thus, by uniqueness follows from
Theorem 2.2-2), we obtain 7T (1o, vo) = (&, ¥), which implies that 7 is continuous. Again,
by Schauder’s fixed-point Theorem, it is easy to see that 7 has a fixed point in #, which
is a pair of positive solutions to the system (S). We indicate that the remaining cases will
be addressed by combining cases 1 and 2. We will only point out the way we choose the
convex which allows us to apply Schauder’s fixed-point theorem. More precisely, we have

Case 3: Firstly, ifa; + 1 + 1 > 1 withag + B < % By using Theorem 2.2-(2), the problem:

Lo = d(x) Pk (x) uao”, up>0 in € up=0, inRN \ @,

has a unique minimal weak solution uy, and satisfying:

1Atk 2za1-p
Cd a1 <yy<Cd 1+l in Q,
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where C > 0 is a constant. We consider the following scalar auxiliary problem:

Lovo =d@) P hy(x) vy, v9>0 in Q =0, inRV\Q,

2-a1-p1
a1+l

weak solution vg in H}(€2) to the above problem. Furthermore, there exist a constant C > 0
such that:

with y = AfyBy +as + ay < 1, Theorem 2.2 - (1), ensures the existence of a unique

Cld<vy<Cd inQ.

Set

(u,v) € HY () x H}, (R);
H =

miug <u <Miuy and wmyvy <v <My

Secondly, if a; + a1 + B1(1 — k) > 1 for some k; € (0,1), with a; + B < % Hence, again by
using Theorem 2.2 - (2), the following two problems:

Liug =d@) Prki(x)uy®™, up>0 inQ up=0, inRV\Q,
and
Liuy =dx) Pk ul™, u>0 in € u;=0, in RV\Q,
have unique positive weak solutions denoted respectively by u and u;, satisfying
1 2-a1-p1 2-a1-p1
Cd a1 <yyg<Cd 1+l in Q,
and
2-a1-B1(1-x9) 2-a1-B1(1-x9)
Cld— w+l <u <Cd ol in €,

where C > 0 is a constant. Now, we consider the scalar auxiliary problem:

Love =dx) P hy(x)vy™, v>0 in Q =0, inRV\Q,

with y = 27:’11—:1’31 If yBy + ay + a3 = 1, Theorem 2.2 - (1), ensures the existence of a unique
weak solution vy in H& (2) to the above problem. Furthermore, there exist a constant C > 0
such that:

Cld<vy<Cd™ inQ.
Set

(u,v) € HE (Q) x H (Q);
H:=

miu, <u<Muy and wmyvy <v <My
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Case 4: Similar to Case 3, we first assume ay + B2 + oy > 1 with a; + 8 < % By using The-
orem 2.2 - (2), the following problem:

Lovo = d®) P2ky(x)v;®, >0 in € 1=0, in RV\Q,
has a unique minimal weak solution vy, and satisfying: for some C > 0
Cld @t <v<Cd @1 in Q.
Now, we consider the following auxiliary problem:

Lo = d(x) Pk (x) uaa‘, up>0 in € uy=0, in RN \ 2,

with & = 27:’22—;1‘92 If €6y + a1 + a1 < 1, Theorem 2.2 - (1), ensures the existence of a unique

weak solution g in Hé (2) to the above problem. Furthermore, there exist a constant C > 0
such that:

Cld<uy<Cd inQ.

Set

(u,v) € HE (Q) x H (Q);

miug <u<Miuy and wmvy<v <My,

Secondly, if ay + ay + B2(1 — k1) > 1 for some «; € (0,1), with a; + B3 < % Hence, again by

using Theorem 2.2 - (2), the following two problems:
Lovo = dx) P2 ka(x)v®, v9>0 in € 1=0, in RV\Q,
and
Lovy =dx) PV @) v*2, v >0 in @ v =0, in RV\Q,

have unique positive weak solutions denoted respectively by vy and v, satisfying

1 2-az—p 2-ay—p
Cd =21 <yy<Cd =1 in Q,
and
1 2-ap—fo(1-k1) 2-ap—fa(1-k1)
C'd <y <Cd @+ in €,

where C > 0 is a constant. Now, we consider the following auxiliary problem:

Liuo = dx) Pk (x) uy™, >0 inQ; u=0, in RV\ @,
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with & = 27;’22—:1’32 If €61 + a1 + @1 = 1, then Theorem 2.2 - (1) guarantees the existence of a
unique weak solution ug in Hj(2) to the above problem. Moreover, there exists a positive
constant C such that:

Cld<uy<Cd™ inQ.

Set

(u,v) € HE (Q) x H (Q);

miug <u <Miuy and myv; <v <M,y
Part 2: Uniqueness of a pair of positive weak solutions.

Suppose by contradiction that there exist two positive weak solution pairs (#;,v;) and
(uy, v7) to system (S), belonging to the conical shell # (defined in each case of the Part 1
cases). This means that

T (uy,v1) = (uy,vi) and T (ug,v2) = (u2,v2),
this equivalently:
(Ti0T2) (u1) = u1, (T2 0 T1) (vi) = vi and (T1 0 T3) (u2) = uz, (T2 0 Th) (v2) = v
Now, we define:
Cmax :=sup{c€R,, cuy<u; and cvy, <v}. (3.18)
We have:
(1) 0 < cmax < 00, since (u1, V1), (42, V) in the conical shell H.
(2) If one can show that cmax > 1, then our objective is achieved, as it implies:
Uy <wu; and v <v; in Q.
Thus, by interchanging the roles of (x;,v1) and (u2, v2), we have

up<u, and vi<vy, in Q.

So, we suppose by contradiction that 0 < ¢yax < 1. From Remark 1.1, we get

B B
Ti(Cman?2) = Cmad) T (V) Tolemaxttz) = (€ma) 21 T (tt2),
and

Bo_ b1 b B1_
(T2 0 T (€Emaxv2) = (Cmax) 2T %1 (Ty 0 T1)(V2) = (Cmax) %2*T 141 vy,

AL P BL_ B
(71 © E)(cmaXMZ) = (Cmax) *1¥1 2271 (71 o 75)(”2) = (Cmax) *171 271 1y,
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Also, by using the weak comparison principle (Theorem 2.1), both mappings 7; o 7, and
T> o T1, being (pointwise) order-preserving mappings, we get that

U = (7-1 o 75)(”1) > (7—1 o 7—2)(Cmaxu2) = (Cmax)lf—g‘l'lf_g‘2 Uz

P B
vi = (T2 0 T)(1) = (T2 0 T)(Cmaxv2) = (Cmax) 71 T2 vy
from 0 < ¢pax < 1 combined with (1.6), we deduce that
B By
(Cmax) 1+a1 1+ﬂ2 > Cmax

from which we get a contradiction thanks to the definition of ¢y, in (3.18). Then, ¢pax >
1. a
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