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Abstract

In this paper, we present an enhanced spectral correction for the
DMDY conjugate gradient method. Our approach involves integrat-
ing a third term and determining its parameter through three different
approaches. The primary objective is to ensure the sufficient descent
condition. By applying the Wolfe line search conditions, we estab-
lish the global convergence property for all three proposed algorithms.
Numerical tests conclusively demonstrate the superior efficiency of our
algorithms, surpassing that of existing methods.
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1 Introduction

The purpose of utilizing Nonlinear Conjugate Gradient (NCG) methods, ex-
tensively studied in [1, 2], is to minimize unconstrained optimization prob-
lems formulated in the following manner:

min
x∈Rn

f(x), (1)

where, n ∈ N∗ is supposed to be very large and f : Rn → R is continuously
differentiable function.
To solve the problem (1) starting form an initial point x0 ∈ Rn, the NCG
method generates a sequence of points {xk}k∈N defined by

xk+1 = xk + αkdk, (2)

where, the stepsizes αk ∈ R∗
+ are determined by some line search and are

very important for global convergence of conjugate gradient methods. In
our work, we use line search to satisfying the Wolfe conditions [3, 4]

f(xk + αkdk)− f(xk) ≤ ραkg
t
kdk, (3)

gtkdk−1 ≥ σgtk−1dk−1, (4)

where, 0 < ρ < σ < 1, and δ < σ < 1. dk ∈ Rn are search directions given
by {

d0 = −g0,
dk = −gk + βkdk−1, k ≥ 1,

(5)

where, gk = g(xk) = ∇f(xk) is the gradient of the function f in the point
xk and βk ∈ R∗ is a scalar called the conjugate gradient parameter. In the
following table, we recall some famous formulas of this parameter
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The Formula Authors

βHS
k =

gtkyk−1

dtk−1yk−1
Hestenes-Stiefel (1952), [5].

βFR
k =

∥gk∥2

∥gk−1∥2
Fletcher Reeves(1964), [6].

βPRP
k =

gtkyk−1

∥gk−1∥2
Polak-Ribiére-Polyak (1969), [7, 8].

βCD
k =

∥gk∥2

−gtk−1dk−1
Conjugate Descent (1987), [9].

βLSk =
gtkyk−1

−gtk−1dk−1
Liu -Storey (1991), [10].

βDY
k =

∥gk∥2

dtk−1yk−1
Dai-Yuan (1999), [11].

Where, yk−1 = gk − gk−1 and ∥.∥ is the Euclidean norm.
To enhance the aforementioned classical NCG methods, several alternative
approaches have been suggested. Among them, a notable method proposed
by Hager and Zhang [12] is a modified version of the HS method known as
the CG-DESCENT method. This method introduces improvements in the
following aspects:

βN+
k = max

{
βNk , ηk

}
, (6)

where,

βNk = βHS
k − 2

∥yk−1∥2

(ytk−1dk−1)2
gtkdk−1, ηk =

−1

∥dk∥2min {∥gk∥ , η}

and η > 0 is a constant. The modification demonstrates that the resulting
descent vector exhibits enhanced efficiency, particularly when employed in
conjunction with an inexact line search.

Another modification was introduced by Hailin Liu, Sui Sun, and Xiaoy-
ong Li [13], who adapted the classical DY method to obtain

βMDY
k =

∥gk∥2

µ|dtk−1gk|+ dtk−1yk−1
, µ > 1. (7)

This modification demonstrates that the obtained descent direction is more
efficient, leading to a more effective and convergent method compared to
the classical DY method.
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Numerous researchers have put forth various methods employing different
techniques to address the problem (1). Notably, the three-term conjugate
gradient method (TTCG) has emerged as a reliable and efficient alterna-
tive to classical conjugate gradient algorithms. This superiority has been
demonstrated in several papers [14, 15]. It should be highlighted that the
most efficient formulation of the TTCG method is as follows:

dk = −gk + βkdk − θkgk (8)

The various three-term conjugate gradient algorithms are distinguished by
their parameter choices, such as βk and θk. For instance, Zhang et al. [16, 17]
proposed the three-term PRP conjugate gradient method (TTPRP) and the
three-term FR conjugate gradient method (TTFR). These modifications en-
sure that a descent direction is obtained and when combined with Armijo
line search, they exhibit global convergence. Building upon these concepts,
Zhang, Li, Weijun Zhou and Donghui Li [18] introduced the three-term HS
conjugate gradient method (TTHS), which guarantees a descent direction
and global convergence when using standard Wolfe line search.
Zoltan and Sanja [19] modified the classical FR conjugate gradient direction
by incorporating the term θkgk, where θk is defined in three different ways
(refer to [19]). Similarly, Habibu Abdullahi and al [20] modified the classical
DY conjugate gradient direction into a three-term conjugate gradient algo-
rithm by adding the term νkgk, where νk is defined in three distinct ways as
well.
On the other hand, the equation (8) can be expressed in the following alter-
native form:

dk = −(1 + θk)gk + βkdk−1.

This alternative form represents the spectral conjugate gradient (SCG)
method. The SCG method, known for its straightforward implementation,
is highly effective and efficient in solving the problem (1). Notable references
supporting its efficacy include [21, 22, 23].
The main objective of this paper is to introduce a novel spectral method
that exhibits improved numerical performance for large-scale optimization
problems. Our goal is to determine the appropriate values for the parameters
θk and βk in order to construct an efficient and coherent method. In terms of
efficiency, we choose the conjugate parameter βk from (7) to be the conjugate
parameter in our spectral method. Building upon the idea presented by
Zoltan and Sanja in [19], we propose a modification to the classical descent
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of the DMDY conjugate gradient method (1) by defining the search direction

dk = −(1 + ψk)gk + βMDY
k dk−1, k ≥ 1.

In order to improve the efficiency and robustness of the spectral conjugate
gradient (SCG) method, our proposed approach involves defining the search
direction using a spectral parameter (1+ψk). Our primary goal is to deter-
mine an optimal and effective selection of the parameter ψk that will result
in a more efficient and reliable SCG method. By carefully tuning this pa-
rameter, we aim to enhance the overall performance of the SCG method in
terms of both computational efficiency and the ability to handle complex
optimization problems effectively.

2 New corrections

In this section, we present a novel spectral conjugate gradient algorithm,
which serves as an enhancement of the DMDY conjugate gradient algo-
rithm proposed by Hailin Liu, Sui Sun and Xiaoyong Li [13]. The primary
objective of this algorithm is to ensure the fulfillment of the sufficient de-
scent condition. The algorithm, denoted as (2), involves the computation of
the direction dk as follows:

dk = −(1 + ψk)gk + βMDY
k dk−1, k ≥ 1. (9)

To account for the coefficient ψk in three different forms, denoted as ψk,1,
ψk,2 and ψk,3, we establish three distinct conjugate gradient directions.
These directions are named as MDMDY1, MDMDY2 and MDMDY3 re-
spectively.
Three different forms of ψk

The search direction is defined by the formula (9), where the parameter
βMDY
k given by (7) with µ > 1.

� MDMDY1 direction
We have

dk = −(1 + ψk,1)gk + βMDY
k dk−1.

By using (7) and multiplying by gtk we get

gtkdk = −(1 + ψk,1) ∥gk∥2 +
∥gk∥2

µ|dtk−1gk|+ dtk−1yk−1
gtkdk−1.
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For the sufficient descent direction we find

ψk,1 =
gtkdk−1

µ|dtk−1gk|+ dtk−1yk−1
, ∀k ∈ N. (10)

So we get
gtkdk = −∥gk∥2 . (11)

� MDMDY2 direction
We have

dk = −(1 + ψk,2)gk + βMDY
k dk−1.

By using (7) and multiplying by gtk we get

gtkdk = −(1 + ψk,2) ∥gk∥2 +
∥gk∥2

µ|dtk−1gk|+ dtk−1yk−1
gtkdk−1.

If we find

ϑk =
gtk

(
µ|dtk−1gk|+ dtk−1yk−1

)
√
2

and φk =
√
2 ∥gk∥2 dk−1.

By the formula

ϑtkφk ≤ 1

2
(∥ϑk∥2 + ∥φk∥2).

Therefore

gtkdk ≤ −(1 + ψk,2) ∥gk∥2 + 1

2(µ|dtk−1gk|+dtk−1yk−1)
2

(
1
2 ∥gk∥

2 (µ|dtk−1gk|+ dtk−1yk−1

)2
+ 2 ∥gk∥4 ∥dk−1∥2

)
,

= −3
4 ∥gk∥

2 +
∥gk∥4∥dk−1∥2

(µ|dtk−1gk|+dtk−1yk−1)
2 − ψk,2 ∥gk∥2 .

For the sufficient descent direction we find

ψk,2 =
∥gk∥2 ∥dk−1∥2(

µ|dtk−1gk|+ dtk−1yk−1

)2 , ∀k ∈ N. (12)

So we get

gtkdk ≤ −3

4
∥gk∥2 . (13)
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� MDMDY3 direction
We define the third ψk,3 by two parts such that, the first part is ψk,1

and the second part is properly chosen such that the sufficient descent
direction is satisfied, therefore

ψk,3 =
gtkdk−1

µ|dtk−1gk|+ dtk−1yk−1
+

∥gk∥2(
µ|dtk−1gk|+ dtk−1yk−1

)2 , ∀k ∈ N.

(14)
So

gtkdk ≤ −∥gk∥2 . (15)

We will now provide a proof that for µ > 1, the three different directions
MDMDY1, MDMDY2 and MDMDY3 satisfy the sufficient descent condi-
tion. This is stated formally in the following theorem:

Theorem 1 If µ > 1, then the direction MDMDY1, MDMDY2 and MD-
MDY3 are a sufficient descent direction for all k ∈ N, i.e.

gtkdk ≤ −C ∥gk∥2 , ∀k ⩾ 0. (16)

Proof 1 For k = 0, we have for all the three directions d0 = −g0, then

gt0d0 = −∥g0∥2 , for C = 1.

For k ≥ 1, considering the conditions (11) and (15), we can establish that the
directions MDMDY1 and MDMDY3 satisfy the sufficient descent condition
with C = 1. Additionally, based on condition (13), we can conclude that
the direction MDMDY2 also satisfies the sufficient descent condition with
C = 3

4 .

Now, we will introduce our three different algorithms, each consisting of the
following steps:

Algorithms 1 (MDMDY1, MDMDY2 and MDMDY3)
Step0: Choosing the initial point x0 ∈ Rn and the parameter µ > 1, ε > 0
and d0 = −g0, such as k = 0.
Step1:

� If ∥gk∥ ≤ ε stop.

� Else go to step2.
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Step2: Calculate step length αk with Wolfe line search condition (3), (4)
for MDMDY1, MDMDY2 and MDMDY3.
Step3: Calculate the direction (9) with βMDY

k formula (7) and

ψk,1 =
gtkdk−1

µ|dtk−1gk|+ dtk−1yk−1
,

ψk,2 =
∥gk∥2 ∥dk−1∥2(

µ|dtk−1gk|+ dtk−1yk−1

)2 ,
ψk,3 =

gtkdk−1

µ|dtk−1gk|+ dtk−1yk−1
+

∥gk∥2(
µ|dtk−1gk|+ dtk−1yk−1

)2 ,
formulas for MDMDY 1, MDMDY 2 and MDMDY 3 respectively.
Step4: Set xk+1 = xk + αkdk.
Step5: Set k = k + 1, then go to step1.

3 Global convergence result

In this section, we present the global convergence analysis for our three dif-
ferent algorithms: MDMDY1, MDMDY2 and MDMDY3. To establish the
global convergence, certain basic assumptions are required.
Assumption 1
Let f : Rn −→ R. The level set Γ = {x ∈ Rn : f(x) ≤ f(x0)} is bounded,
where x0 ∈ Rn is the starting point of the iteration and f is a continuously
differentiable function in a neighborhood ℵ of Γ .
Namely, there exists a constant D > 0, such that

∥x∥ ≤ D, ∀x ∈ ℵ. (17)

Assumption 2
The gradient g(x) of f is Lipschitz continuous in ℵ. Namely, there exists a
constant L > 0, such that

|| g(x1)− g(x2) ||≤ L || x1 − x2 ||, ∀x1, x2 ∈ ℵ. (18)

By using Assumption 1 and Assumption 2, we deduce that ∀x ∈ ℵ there
exists a positive constant ϱ > 0, such that

|| g(x) ||≤ ϱ, ∀x ∈ ℵ. (19)

Also, in order to prove the global convergence of the new methods, we need
the following two results.
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Lemma 1 [24] Suppose that the Assumption 1 and Assumption 2 are satis-
fied. Let the sequence {xk}k∈N be generated by the three different algorithms
(MDMDY1, MDMDY2 and MDMDY3) and dk ∈ Rn satisfied the condition
(16). αk is determined from Wolfe line search (3), (4). If

∞∑
k=0

1

|| dk ||2
= ∞. (20)

Then
lim inf
k→∞

|| gk ||= 0.

Lemma 2 [25] Suppose that the Assumption 1 and Assumption 2 hold and
the sequence {xk}k∈N be generated by the three different algorithms (MD-
MDY1, MDMDY2 and MDMDY3) and dk ∈ Rn satisfy the condition(16).
αk is determined by Wolfe line search (3), (4). Then

αk−1 ≥
(1− σ) | gtk−1dk−1 |

L || dk−1 ||2
. (21)

Proof 2 With the Wolfe conditions (3) and (4), we get

dtk−1(gk − gk−1) ≥ (1− σ) | gtk−1dk−1 | . (22)

From condition (18) and using the Cauchy Schwarz inequality, we have

dtk−1(gk − gk−1) ≤ Lαk−1 ∥dk−1∥2 . (23)

By condition (22), therefore

(1− σ) | gtk−1dk−1 |≤ Lαk−1 ∥dk−1∥2 .

So we have proved (21).

This indicates that αk obtained by our method is different to zero, hence
there exists a constant γ > 0, such that

αk ≥ γ, ∀k ≥ 0. (24)

We need also the theorem bellow to prove the global convergence of the
three algorithms (MDMDY1, MDMDY2 and MDMDY3).
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Theorem 2 Suppose that the Assumption 1 and Assumption 2 are satisfied
and the vector sequence {xk}k∈N is generated by the three different algorithms
(MDMDY1, MDMDY2 and MDMDY3). Then αk is determined from Wolfe
line search (3), (4), then

lim
k→∞

inf || gk ||= 0. (25)

Proof 3 We prove by contradiction i.e, assume that there exists ε > 0, such
that

|| gk ||> ε, ∀k ≥ 0. (26)

We have ∣∣βMDY
k

∣∣ =
∣∣∣ ∥gk∥2
µ|dtk−1gk|+dtk−1yk−1

∣∣∣ ,
≤ ∥gk∥2

dtk−1yk−1
.

(27)

On the other hand, this proof is divided into three parts corresponding to
three algorithms (MDMDY1, MDMDY2 and MDMDY3).
Part 1: MDMDY1 direction
We have

|ψk,1| =
∣∣∣ gtkdk−1

µ|dtk−1gk|+dtk−1yk−1

∣∣∣ ,
≤ |gtkdk−1|

µ|dtk−1gk|+dtk−1yk−1
,

≤ 1
µ .

(28)

From (9), we get

dk = −(1 + ψk,1)gk + βMDY
k dk−1.

This implies

∥dk∥ ≤ ∥gk∥+
∣∣βMDY

k

∣∣ ∥dk−1∥+ |ψk,1| ∥gk∥ .
From (27) and (28), we have

∥dk∥ ≤ ∥gk∥+
∥gk∥2

dtk−1yk−1
∥dk−1∥+

1

µ
∥gk∥ .

From (4), (11) and (26), we get

∥dk∥ ≤ ∥gk∥+
∥gk∥2

(1− σ)ε2
∥dk−1∥+

1

µ
∥gk∥ .
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By (2), (24), (17) and (19), we have

∥dk∥ ≤M1. (29)

Where M1 = (1 + 1
µ)ϱ+

ϱ2D
γ(1−σ)ε2

.

Part 2: MDMDY2 direction
We have

|ψk,2| =

∣∣∣∣ ∥gk∥2∥dk−1∥2

(µ|dtk−1gk|+dtk−1yk−1)
2

∣∣∣∣ ,
≤ ∥gk∥2∥dk−1∥2

(dtk−1yk−1)
2 .

(30)

By (9), we get
dk = −(1 + ψk,2)gk + βMDY

k dk−1.

This implies

∥dk∥ ≤ ∥gk∥+
∣∣βMDY

k

∣∣ ∥dk−1∥+ |ψk,2| ∥gk∥ .

From(27) and (30), therefore

∥dk∥ ≤ ∥gk∥+
∥gk∥2

dtk−1yk−1
∥dk−1∥+

∥gk∥2 ∥dk−1∥2(
dtk−1yk−1

)2 ∥gk∥ .

By using (4), (13) and (26), we obtain

∥dk∥ ≤ ∥gk∥+
4 ∥gk∥2

3(1− σ)ε2
∥dk−1∥+

16 ∥gk∥2 ∥dk−1∥2

9(1− σ)2ε4
∥gk∥ .

From (2), (24), (17) and (19), thus

∥dk∥ ≤M2. (31)

Where M2 = ϱ+ 4ϱ2D
3γ(1−σ)ε2

+ 16ϱ3D2

9γ2(1−σ)2ε4
.

Part 3: MDMDY3 direction
We have

|ψk,3| =

∣∣∣∣ gtkdk−1

µ|dtk−1gk|+dtk−1yk−1
+ ∥gk∥2

(µ|dtk−1gk|+dtk−1yk−1)
2

∣∣∣∣ ,
≤ |gtkdk−1|

µ|dtk−1gk|+dtk−1yk−1
+ ∥gk∥2

(dtk−1yk−1)
2 ,

≤ 1
µ + ∥gk∥2

(dtk−1yk−1)
2 .

(32)
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From (9), we get

dk = −(1 + ψk,3)gk + βMDY
k dk−1.

This implies

∥dk∥ ≤ ∥gk∥+
∣∣βMDY

k

∣∣ ∥dk−1∥+ |ψk,3| ∥gk∥ .

By (27) and (32), we have

∥dk∥ ≤ ∥gk∥+
∥gk∥2

dtk−1yk−1
∥dk−1∥+ (

1

µ
+

∥gk∥2(
dtk−1yk−1

)2 ) ∥gk∥ .
From (4), (15) and (26), therefore

∥dk∥ ≤ ∥gk∥+
∥gk∥2

(1− σ)ε2
∥dk−1∥+

1

µ
∥gk∥+

∥gk∥3

(1− σ)2ε4
.

By using (2), (24), (17) and (19), thus

∥dk∥ ≤M3. (33)

With M3 = (1 + 1
µ)ϱ+

ϱ2D
γ(1−σ)ε2

+ ϱ3

(1−σ)2ε4
.

So, by using (29), (31) and (33) and applying (20) this is a contradiction
with (26), thus we have proved (25).

4 Numerical results

In this section, we present the results of numerical tests conducted to com-
pare the performance of our three algorithms, namely MDMDY1, MDMDY2
and MDMDY3. The tests were conducted using the strong Wolfe line search
conditions with ρ = 0.0001 and σ = 0.1. The parameter µ was set to 1.1
and the three different forms ψk,1, ψk,2 and ψk,3 were employed, as given in
(10), (12) and (14) respectively.
The comparison was made against the following three conjugate gradient
methods:

� DMDY: defined in (7) with the parameter µ = 1.1.

� TTFR: is presented in [17].

� CG-DESCENT: is presented in [12].
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For that we selected 85 unconstrained optimization test problems from [26],
this problem was tested for a number of variables:
n = 2, 10, 20, 25, 100, 200, ....., 10000. The completion criterion for all algo-
rithms is ∥gk∥2 ≤ 10−7 or number of iterations exceeded 50000.
Running on the PC machine (IntelRCoreTM i3−2348M CPU @ 2.30 GHz,
4.00 Go RAM). Our use of performance profiles given by Dolan and Moré
[27] to compare the performance according to CPU time, the number of it-
erations and the number of gradient evaluations. Define S the set of solvers
its number is denoted by ns, and P is the assortment of test issues, with np
representing the count of test problems. For every problem p ∈ P and solver
s ∈ S, let τp,s signify CPU time or the number of iterations or the number of
gradient needed to address problem p ∈ P using solver s ∈ S. Consequently,
an assessment of diverse solvers is established on the performance ratio, as
follows

rp,s =
τp,s

min {τp,s : s ∈ S}
,

Assume a parameter rM where rM ≥ rp,s holds true for all selected problems
and solvers and rp,s = rM , if and only if solver S fails to resolve problem
P . The comprehensive assessment of solver performance is subsequently
determined by the performance profile function, articulated as follows

ρs(τ) =
size {p ∈ P : log2(rp,s) ≤ τ}

np
,

here, where τ is greater than or equal to 1, and size {p ∈ P : log2(rp,s) ≤ τ}
is the count of elements in the set {p ∈ P : log2(rp,s) ≤ τ}, then ρs(τ) rep-
resents the probability of the solver s ∈ S that a performance ratio rp,s is
within a factor τ ∈ R. The ρs is the distribution function for the performance
ratio. The value of ρs(1) represents the probability of the solver outperform-
ing the remaining solvers. In essence, we illustrate, for each method, the
proportion P of problems for which the method achieves a time within a
certain factor of the best time. The left segment of the figure indicates the
percentage of test problems in which a method is the quickest, while the
right segment reveals the percentage of test problems successfully addressed
by each method. The top curve represents the method that effectively re-
solved the highest number of problems within a time frame close to the best
time.
Figure 1, 2 and 3 represent the performance profile measured by CPU
time, the number of iterations and the number of gradient evaluations re-
spectively.
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Based on the figures presented, it is evident that our three different al-
gorithms, namely MDMDY1, MDMDY2 and MDMDY3, exhibit superior
efficiency in terms of computation time, number of iterations and error re-
duction. Notably, the MDMDY 1 method stands out as the most efficient,
outperforming the DMDY, TTFR and CG-DESCENT methods. These re-
sults confirm the effectiveness of our proposed algorithms and their superi-
ority over existing methods in terms of optimization efficiency and accuracy.
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Figure 3: Performance profile for the number of gradient evaluations.

5 Conclusion

In this paper, we have introduced a novel spectral conjugate gradient method
that incorporates three different directions based on the DMDY direction.
These directions serve as a correction to the classical DY conjugate gradient
method. The selection of these directions is made by verifying the sufficient
descent condition, which ensures their effectiveness. Moreover, we have es-
tablished a more efficient global convergence for our proposed method.
To validate the effectiveness of our approach, we conducted numerical tests.
The results showed significant improvements in terms of computation time,
number of iterations and number of gradient evaluations. Our method out-
performed several well-known conjugate gradient methods, further confirm-
ing its efficiency and superiority in practical optimization problems.

References

[1] Abdullahi, Habibu and Awasthi, AK andWaziri, Mohammed Yusuf and
Halilu, Abubakar Sani. Descent three-term DY-type conjugate gradient
methods for constrained monotone equations with application. Compu-
tational and Applied Mathematics. 41:1-32, 2022.



The best spectral correction of DMDY conjugate gradient method 40

[2] Aminifard, Zohre and Babaie-Kafaki, Saman. A modified descent
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