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The Colebrook -white equation is widely used in many fields, like civil engineering for calculation of
water distribution systems and in all fields of engineering where fluid flow can be occurred. Numerous
formulas have been proposed since 1947 in order to simplify the computation of the friction factor, to
avoid the iterative procedures methods and to alter the Colebrook-white equation in practice. most of
the existing explicit formulas for computation of the friction factor for turbulent flow in rough pipes pro-
posed are cited, where thirty three “33” equations have been inventoried. The goal of this paper is to
assess the accuracy of each model and to propose an arrangement from the best to the lower accuracy
according to a proposed method combined of three criteria which are: simplicity of the formula, maxi-
mum deviations and the coverage of the entire range of Moody diagram.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

Estimating head loss is an important task in the hydraulic engi-
neer’s life practice. Water supply network is prime example, where
the implicit Colebrook-White equation has been widely used to
estimate the friction factor for turbulent fluid-flow in Darcy-Weis-
bach equation. It is therefore no surprise that it has attracted a lot
of attention by both practitioners and researchers over the past
years. The Darcy-Weisbach model for steady, uniformly dis-
tributed head losses reported in Eq. (1) probably represents the
most well-known formula where the friction factor “f” is used to
compute the slope hydraulic grade line ] (i.e. the head loss per unit
length of a pipe [1]:

sfL ,

I= g (1)
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where

j: the hydraulic energy slope (m),
f: friction factor,

L: length of the pipe (m),

D: Intern pipe diameter (m)

Q: Flow (m?/s)

To solve the Eq. (1), the iterative procedure is necessary and
inevitable for the first time, which involve evidently a huge time
for the computation of the friction factor and by the way the com-
putation of all the physical system where the friction values makes
part.

The flow is qualified turbulent if the Reynolds number is equal
or exceed 2300 [2]:

Re > 2300 (2)

According to Moody'’s diagram four regions can be defined: lam-
inar region where the roughness has no discernible effect; transi-
tion region is an intermediate region between the smooth and
rough zone, the friction factor values depend on the relative rough-
ness of the pipe and Re; the hydraulic smooth flow regime known
by the moderate degree of roughness, the pipe acts as a smooth
pipe; and the full developed turbulence region where f is indepen-
dent of Re [3,4].

For the laminar region, the fiction factor depends only on Rey-
nolds number:
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In the full developed turbulence region the friction coefficient
depends only on relative roughness, Nikuradse’s turbulent pipe
flow investigations are achieved to the following formula [5,6]:

s = [-2t08(42)] N )

where

€: is the average roughness height (Or, the equivalent Niku-
radse’s sand-grain roughness),
D: is the interne pipe diameter.

The computation of the friction factor is explicit for laminar and
developed turbulence.

Before 1939 when Colebrook-White equation was published for
turbulent regime in smooth pipes (The fourth region) the implicit
Prandtl’s equation was widely used. Prandtl derived a formula
from the logarithmic velocity profile and available experimental
data on smooth pipes [7]; which is known as Prandtl-Von Karman
equation [7,8].

251\
o)

In 1937 Colebrook according to experiments data conducted by
himself, his colleague White established a curve fit and presented
the well-known formula Colebrook-White [9]; which is the first
equation allow to describe the flow in the transition region, hence
this formula is consisted of two terms presented by Nikuradse and
Prandtl:

-2
¢/D 251
f= [—ZIog <ﬁ+Re\/f>:| (6)

All cited authors were trying to approximate the White-
Colebrook equation by fitting the points that are given in Moody’s
diagram. Moody’s diagram was in fact formed from data obtained
by using the White-Colebrook formula which is in fact an approx-
imation of the Nikuradse’s harp and not a too successful one
(which is widely recognized) due to high degree of inconsistence
with the original in the region of transition to turbulence [7,1].

Sletfjerding et al. [10] reported that Nikuradse used sand-grains
and “Japanese lacquer” to vary the surface roughness of his test
pipes. Several authors have questioned Nikuradse’s measurements.
Zagarola [11] gives a critical review of the smooth pipe measure-
ment by Nikuradse [12] (the experimental set-up for Nikuradse’s
rough pipe experiments was similar to the smooth pipe set-up).
Zagarola noted several inconsistencies in Nikuradse’s experimental
set-up and work. Grigson [13] showed how problems in defining
the origin for the logarithmic velocity profile makes it difficult to
determine the Von Karman constant from Nikuradse’s
measurements.

Using the data extracted from tables 2-7 of Nikuradse [12] for
turbulent flow, several authors [7,14,15] confirm the fact that at
the transitional regime between the smooth and rough flow is
not comply with Colebrook white results. Most friction factor cor-
relations used in industry are semi-empirical models based on tur-
bulent boundary layer theory. The difference between the
roughness of the commercial pipes and the sand used by Nikuradse
[16] is the main cause for the difference between the two formulas
of Colebrook-white and Nikuradse.

It is not easy to calculate the friction factor “f” using Eq. (6). The
friction factor appears in the both sides, the Colebrook’s equation is

implicit, and it has to be solved iteratively which causes serious
difficulties in repetitive calculations of the friction factor. For this
reason, a number of approximate solutions have been proposed
to alter the Colebrook’s equation; thirty three (33) equations were
inventoried. Several authors have reviewed these equations by
looking at the accuracy only [17-19]. The More the equation is
longer the more the CPU time is higher. However the explicit for-
mulas which are the topic of the paper the time need for their com-
putation is “zero” so the only difference that can make sense is the
environment and the work size in which the use of those formulas
is an obligation. The basic idea of this paper is to review most of the
existing explicit formulas for computation of the friction factor for
turbulent flow in rough pipes and to introduce more than one cri-
terion to select the best equations. Three criteria were proposed:
simplicity of the formula, maximum deviations and the coverage
of the entire range of Moody diagram.

2. Approximate solutions

The Eq. (6) is implicit which needs for the trial error methods or
a graphical solution, the Moody’s diagram is surprisingly a good
solution for Colebrook-white equation. In general the graphical
solutions are not accurate and are limited. For this reason many
authors have proposed approximate solutions [20] for Colebrook-
White equations [21,22] from 1947 until nowadays which can be
presented as following:

2.1. Moody'’s formula (1947)

In 1947 Moody [23] has proposed a new form of Colebrook-
white equation. Moody is widely known by his diagram but not
by this proposal to replace the implicit equation which is the oldest
explicit proposal:

f=00055 [1 + (2% 10*(e/D) + (106/&))”3] -

Moody proposed to use the Eq. (7) for the following range:
4000 <R, < 10°® and 0 < (¢/D) <1072

2.2. Altshul correlation (1952)

Altshul in 1952 - equation from Russian practice - which is cited
by Genic et al. [18] and Mustafa et al. [19] gave a friction factor cor-
relation presented as in the Eq. (8):

f=0.11 (%H/D)m 8)

According to Round [24] Altshul proposed another formula
which is improved from the equation of Konakovt's [25] as
following:

\Lff = 1.8log (éﬁ) 9)

Altshul recommends the following range:
4000 <R, <107, and 0 < (¢/D) <10
2.3. Wood equation (1966)

Wood [26] tried to gives a formula more simple than the Eq. (6).
Wood proposed to use the following formula:

f =0.53(¢/D) + 0.094(¢/D)°?* + 88(¢/D)**R, &2/ (10)
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Limit:
R, > 4000, and 0 < (¢/D) <5-1072
2.4. Eck’s equation (1973)

The Eck’s Eq. [27] is simpler, it was proposed in 1973 and he
suggests the following equation:

1 ¢ 15
o~ 2log (oot 11
JF g(3.7151) Re) (an

The recommended range to use the equation was not found
[28].

2.5. Swamee and Jain (1976)
This formula has been widely used as the best explicit approx-

imations of the Colebrook-White formula. Even in much software
like EPANET [29,30]. The formula can be expressed as follows:

¢/D  5.74\\ °
fo (—210g<ﬁ+Reo_9>> (12)
The authors proposed to use the Eq. (12) in the following range:
5000 < R, < 10® and 10°® < ¢/D < 1072

2.6. Approximation of Jain (1976)

The Eq. (13) was proposed in 1976 by Jain after succeeded effort
under the following form [31]:

1 & 6.943\%°
—f: —2log (3‘715D+ (—RE > ) (13)

Jain recommended using the Eq. (13) for the following range:

5000 <R, <10” and 4x10° <¢/D<5x 1072

2.7. Churchill’s formula (1977)

To replace the Colebrook-white equation Churchill proposed to
use the following expression [32]:

U el [B], (7)"

N —ZlogHﬁ} + (R_e> (14)
The recommended range to use the equation was not found

[33].

2.8. Chen'’s approximation (1979)

Chen has contributed in the explicit of Colebrook-white equa-
tion by a long explicit solution [34]:

(%) )1.1098

1 5.0452 (s
N ~2log <3.7065 - ( R, ) log H2.8257

+ (5.8506/RE°'8981)D
(15)
Recommended range:
4000 <R, <4 x 10%, and 1077 < (¢/D) <5 x 1072
2.9. Shacham correlation (1980)

Correlation proposed by Shacham [35] as following:

& 502 e 145\)) 2
f: <72[0g<ﬁ*R7elog<ﬁ+ Re >>> (16)

Limit:

4000 <R, <4 x 108, and 0 < (¢/D) <5 x 1072

2.10. Round approximation (1980)

Approximation proposed by Round [24] is relative and simple:

R

1 e
7= 18108 |5 135, (/D) + 6.5

Vi

For the following validity range:

4000 <R, <107, and 0 < (¢/D) <1072

(17)

2.11. Barr approximation (1981)

Approximation proposed by Barr [36] does not require internal
iterative calculus:

€ 4.518log(R./7)

1
= —2log(z=5+ Re(l 4 RS-SZ/(29(£/D)O‘7))

7

Limit:

(18)

2300 <R, <10, and 0 < (¢/D) <5 x 1072

2.12. Zigrang and Sylvester approximations (1982)

Approximation proposed by Zigrang and Sylvester [37] don’t
use internal iterative procedure to achieve a good accuracy:

L = —2lo & &lo & —&lo & E
g 9% \370 " R %3 R P37 TR
(19)

Zigrang's equation is recommended for the following range:

4000 <R, <108, and 107° < (¢/D) <5x 1072

2.13. Proposal of Haaland (1983)

In 1983 Haaland published his explicit solution for Colebrook-
white equation as follows [38]:

1 —LSIogH(%)/Bﬂ My (6.9/Re)} (20)

Vi

Where the recommended range is given as:

4x10° <R, <10% and 107° < (¢/D) <5 x 1072

2.14. Serghides equation (1984)

Serghides equation is an approximation of the implicit Cole-
brook-White equation. It is valid for all ranges of Reynolds num-
bers and relative roughness as follows [39]:

1 (B — A)?

A e D)

A= _2log (%QQ—Z) (22)
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B e/D 2.51A
B——2log <ﬁ+ - ) (23)
B ¢/D 251B
C=—2log (ﬁ +22 ) (24)
Limit:
2300 <R, < 10°, and 10°° < (¢/D) <5x10°*
2.15. Tsal correlation (1989)
Tsal [40] developed a relationship that is valid for:
4x10°<Re<4x10%and 0 < (¢/D) < 5-107?
68 P 0.25
ﬂ:O.ll(R—+5> (25)
In the case when:
B> 0.018,
Then:
f=8 (26)

The Eq. (26) of Tsal [40] approximation was already proposed
by Altshul [18].
Else:

f=0.018+0.858 (27)
2.16. Formula of Manadilli (1997)

In 1977 Manadilli proposed a direct solution to alter the
Colebrook-white equation by using the following formula [41]:

72l () - ()] @)

Recommended range:

5235 x 10° <R, < 1080 < (g) <5%x102

2.17. Approximation of Romeo et al. (2002)

Using multiple variables regression method Romeo has pro-
posed the following formula [42]:

L——Zlo I3 B 5.0272 o ( 3
i °8\37065D R 8(3.827D

4.567 e 0.9924 53326 0.9345
—|—5—)log <7> Y it
R 7.7918D 208.815 + R,

(29)

Recommended range:

3x10° <R <1.5x10% and 0< (¢/D)<5x1072

2.18. Achour’s formula (2002)

In order to simplify the computation of the friction factor for
turbulent pressurized flow, Achour propose to use the following
formula [43]:

B ¢/D 45 R \]°
f= {—2 log (ﬁJrRT, 10g6'97>} (30)

Recommended range:

R.>10* and 0<g/D<5x 1072

2.19. Equation of Ajinkya (2006)

Using Jean Henri Lambert function or omega function, where is
defined as the inverse function of: Z = we" i.e., w = lambert(Z)
denoted by W(z) [44], Ajinkya [45] proposed an analytical solution
for Colebrook- white equation. The author proposes to use Wilkes’s
proposal [46] about the expression of Colebrook- White equation as
follows:

1 4 1.257
—=-17372|In| 5=+ ——= 31
VI [ (3'”’ Rex/fﬂ Y
€ 1.257

If we replace the amount (1/,/f)by”y” in the Eq. (31) we obtain
the following:

y = —clIn(a + by)]. (32)
So:
a+ by =a— bc[in(a + by)). (33)

Let’s to replace: (a + by) by “(” after many arrangements we get
the following:

a
Sm@o=g (34)
Or:
(: ; ea/bc
Ee*bc = Ie (35)

Using the Lambert function definition, the Lambert equation
can be writing as follow:

C - ea/b
b~ " ( bc ) (36)
After a few elementary simplifications the equation can be

rewritten as:
1

f= 37)

~ [cWo(ee/ /bc)] — a/by’
Recommended range:

10° < &/D < 0.05 et 4x10* <R, < 10°

2.20. Buzzelli approximation (2008)

Buzzelli (2008) proposed the following approximation [47]:

1 A+ 2log(B/R,)
N/ ( 1+ (2.18/B) >

where

_ 0.7741In(R,) — 1.41

1+1.32,/¢/D

B = (¢/3.7D)R. + 2.51A

(38)

Recommended limit:
2300 <R, <10°, and 0 < (¢/D) <5 x 107?
2.21. Sonnad - Goudar equation (2006)

Goudar-Sonnad equation is an approximation of the implicit
Colebrook-White equation. It has the following form [48]:
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1
i
where
S =0.124(¢/D)R, + In(0.4587R,)

(39)

—os6ssin(~2 )

S

sGH)

Limit:

4000 <R, < 10®, and 107° < (¢/D) <5x 1072

2.22. Rao and Kumar approximation (2007)

The Approximation proposed by Rao and Kumar in 2007 is
given by the Eq. (40) [49]:

- (2¢/D)”"
7f7 2[0g<((0'444+O.]35Re)/Re)F(Re)> (40)

where
FR)=1- 0'556—0.33(111(&./6.5))2
Limit:

2300 <R, < 10%, and 107° < (¢/D) < 5x 1072

2.23. Avc¢i and Karagoz approximation (2009)

The formula proposed by Av¢i and Karagoz (2009) has been
developed from the experimental Princeton super-pipe data [50]:

f- o4 (41)

(,nRe _ ln(1 +0.01R.(¢/D) (1 + 10\/’3/—D>>)M

Limit:

2300 <R, < 10%, and 0 < (¢/D) <5 x 1072

2.24. Vatankhah and kouchakzadeh (2009)

Sonnad and Goudar in 2006 [48] presented a relationship for
the friction factor which has been improved by the discussers
[51] as following:

f= (aln(d/(s - o.zs)sﬁ))f2 (42)
where

a=0.8686, d=0.4587R., and
S = 0.1240(¢/D)R. + In(0.4587R.)

Limit:

10* <R, < 10®, and 10°® < (¢/D) < 1072

2.25. Papaevangelou correlation (2010)

Papaevangelou et al. [52] developed an explicit formula given
by Eq. (43):

~0.2479 — 0.0000947(7 — logR,)"*
- 2
(log (_;ggg +7.366 /RS'9142>>
Limit:

4000 < R, < 10%, and 10°° < (¢/D) <5x 1072

f (43)

2.26. Brkic correlation (2011)

Brkic in 2011 [17] developed a relationship to calculate explic-
itly the friction factor as follows.

1 —2log(10-°~4343” + 8/3.7D) (44)

Vi

where

B=In(1+0.458R.) (1 _In(+In(1 + 0.458Re))>

2 +In(1 + 0.458R,)
Limit:

4000 <R, <10, and 0 < (¢/D) <5 x 107*

2.27. Fang correlation (2011)

Fang et al. [53] developed a relationship that is valid for
3x10°<Re<4 x 10% and 0 < (§) <5-10* the formula is pre-
sented under the equation (46):
f= 1.613(ln (0.234(8/D)1’1007 - (60.525/123-“05) + (56.291 /R;'Oﬂz)))d

(46)

Limit:

3000 <R, < 10%, and 0 < (¢/D) <5 x 1072

2.28. Ghanbari-Farshad-Rieke’s correlation (2011)

Correlation proposed by Ghanbari et al. [54] is based on data
collected from the Moody diagram. The range of applicability of
their equation is between the relative roughness of ¢/D = 0.0 to
0.05 and the Reynolds numbers ranging from 2100 to 108,

-2.169

f= <1.5210g<<§/2D]>1'042) + (2-731/Re)°'9152> (47)

Limit:

2300 <R, <10, and 0 < (¢/D) <5 x 1072

2.29. Brki¢ Dejan equation (2011) [55]

Using different solutions of the Lambert W-function, Brkic
(2011) [55] propose an explicit form for the Colebrook- white
equation as follows:

1 218 xS
= Zlog( R

VF

where “S” is given by the following expression:

In(1 + In(1 + 0.458R,))
2+ In(1 + 0.458R.)

+ 8/3.7]D> (48)

S=In(1+ 0.458R,) (1 - (49)

Limit:
2300 <R, < 10%, and 0 < (¢/D) <5 x 1072
2.30. Formula of Saeed Samadianfard (2012)
Using genetic programming Saeed Samadianfard in 2012 [28]

published his work about the explicit computation of the friction
factor equation; this later can be expressed as:
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¢/D 1/9
o R. i 0.6315093 00275308 (6.929841 e /D> .
Re'”” +Re x &/D e
10¢P 9.997001
(s/D 4781616 <V ¢o/D+—% > (50)

Recommended range:

4x10° < Re < 10® and 0 < &/D < 0.05

2.31. Achour approximation (2012)

Using the rough model method - RM.M - [56] the friction factor
can be expressed as following:

1 ¢/D 10.04

ﬁ = 7210g]0 <3—7+T> (51)

where

- g/D 55\

R—2Re[ lo 10<3/.7+W>} (52)
Limit:

2300 <R, < 10® and 0 < &/D < 0.05

2.32. Cojbasic zarko and dejan Brkic (2013) [57]

This proposal is the improvement of Romeo results called model
B, which can be written as:

1 5
— = —2log| (¢/3.7106D) — —log((¢/3.8597D
T~ -0 (/3.7106D) - 2 log((5/3.8597D)
479 (¢/7.646D)" % 1 53)
- og 0.8795
Re 2\ (i)

Limit:

2300< R, < 10%, and 0 < (¢/D) <5 x 1072

2.33. Ali R. Vatankhah formula (2014) [58]

Using the relative error as an objective function, the approxima-
tion of Sonnad and Goudar [48-59] is improved by fine tuning of
the coefficient as:

2.51/R. +1.1513¢ 2
f- / (54)
5 — (¢/D)/3.71 — 2.30265l0g(3)
where
o 6.0173 g/D
B +397 (55)

- 0.109
R. <0.07(8/D) + R;OBSS)
Limit:

4000< R, < 10, and 107° < (¢/D) < 5 x 1072

3. Accuracy analysis method

For the best assessment of the reliability of each approximation
cited in this paper, many steps ought to be followed and the results
will be compared with Colebrook-white relationship.

In this study, we assume that Colebrook-white formula gives
the exact values of the friction factor. The comparison will be
applied using the following steps:

e Random value of relative roughness is selected from the range:

& )
<Z<5.

0< PE 5-10

e Reynolds number belongs for the entire range of Moody dia-
gram :

2300 < R, < 108

e For each value of the relative roughness of the friction factor is
calculated using the Colebrook -White formula iteratively for
all values of Reynolds number.

o The friction factor for each approximations cited above will be
calculated using the appropriate proposed equation.

e The deviation (Af/f) in (%) between the friction factors
foroposea@nd f oy Which respectively means the proposed formula
and Colebrook-White equation is easily computed using the fol-
lowing formula:

A_f - fproposed - fCW

o All tests will be dividing in two parts: firstly we start by the pro-
posed range for application of the approximation solutions, and
secondly the entire range of Moody. i.e., for :

2300 <R, <10® and 0<¢/D<5-1072

o For the equations where the validity range is not found, the test
is applied for the entire range of Moody diagram.

Using the seventh steps cited above, we obtain the following
results:

As it can be observed, the obtained results presented in the
Table 1 based on the range of applicability proposed by their
authors confirm that the explicit formulas are not accuracy and
the need for more criteria became necessary, for this reason Table 2
was proposed to select the best equation.

The simplicity of the formula is closely related to the execution
time. A simple formula has the shorter CPU time. To assess the sim-
plicity of the equations cited above, Table 3 is established where
three criteria are proposed:

e The simplicity of the equation form,

o The length of the equation,

e The number needed to compute the friction factor as proposed
by the authors.

To select the best formula three steps were applied:

e The accuracy will be considered as the most important criterion,

e The best formula should be simple as described above,

o In the case of discrepancy of the two above conditions, the accu-
racy is considered.

4. Discussion

From the above it is clear that the accuracy claimed by many
authors was not exact as it is mentioned in the Table 1 and the
Fig. 1; 07 formulas cross the sill of 88% such as: Altshul [18], Barr
[36], Serghides [39], Tsal [33] and so on, which are to be rejected.
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Table 1
Test of the validity range proposed by the authors.

Author Reynolds number Relative roughness Errmax(Af /f)%
Moody 4000 < R, < 108 0<e¢/D<107? Af/f =12.08%
Altshul 4000 < R, < 107 0<ég/D<107? Af/f > 100%
Wood R. > 4000 0<¢&/D<5.1072 Af/f =28.23%
Eck not found not found Af/f =10.7%
Swamee and Jain 5000< R, < 108 10°%< ¢/D <107 Af/f =2.81%
Jain 5000 < R, < 107 4107° <¢/D <5107 Af/f =2.83%
Churchill not found not found Af/f =4.59%
Chen 4000 <R, < 4-10° 107 <¢g/D<5-1072 Af/f =36.18%
Shacham 4000 <R, < 4-10° 0<¢/D<5-1072 Af/f =0.88%
Round 4000 < R, < 10’ 0<e¢/D<107? Af/f =7.85%
Barr 2300 < Re < 10° 0<g/D<5-1072 Af/f = 86.95%

Zigrang - Sylvester

Haaland 4.10° <R, < 10®
Serghides 2300 <R, < 10®
Tsal 4.10° <R, < 10°
Manadilli 5235-10° <R, < 10°
Romeo 3x10® <R, <10°
Achour (2002) R. > 10*

Ajinkya 4x10* <R, < 10°
Buzzelli 2300 < R. < 10°
Sonnad 4000 <R, < 10°
Rao 2300 <R, < 10°
Avgi 2300 < Re < 10°

Vatankhah 2009
Papaevangelou
Brkic¢

4000 < R, < 10°

10* <R, < 10°
4000 < R, < 10°
4000 < R, < 10°

10°<¢e/D<5-1072
108%<¢e/D<5-1072
10%<g/D<5-1072
0<eg/D<5-1072

Af/f = 0.17%
Af/f =1.41%
AF/f > 100%
AF/f > 100%

Fang 3000 < R, < 10°
Ghanbari 2300 < R. < 108
Brki¢ 2011a 2300 <R, < 10°
Samadianfard 4000 < Re < 108
Achour 2012 2300 < R, < 108
Cojbasic 2300 < R, < 108

Vatankhah 2014 4000 <R, < 10®

0<¢&/D<51072 Af/f =2.5%
0<eg/D<5-1072 Af/f =0.16%
0<gD<5-1072 Af/f =2%
10°<e/D<5-1072 Af/f =7%
0<gD<5-1072 Af/f > 100%
10%<e/D<5-1072 Af/f =5.32%
10%<e/D<5-1072 Af/f = 8.879%
0<g/D<5-1072 Af/f > 100%
105<e/D<102 Af/f = 0.16%
10°%<e/D<5-107 Af/f = 0.76%
0<é¢/D<5-1072 Af/f =2.13%
0<e/D<5-1072 Af/f = 0.54%
0<g/D<5-1072 Af/f = 88.02%
0<g/D<5-1072 Af/f = 3.46%
0<e/D<5-1072 Af/f =6.31%
0<e/D<5-1072 Af/f = 0.366%
0<g/D<5-1072 Af/f =0.18%

108%<¢/D<5-1072 Af/f =0.146%

Fig. 1 was drawing using more than five hundred thousand
(500,000) values for each equation for deep investigation of the
maximum deviation (The other figures were drawing using the
same accuracy). Unfortunately the equations of: Serghides [39],
Buzzelli [47] and Avgi [50] due to their high values of the maxi-
mum relative error (Af/f > 100%) their representation becomes
useless.

The equations are in general written in simple form except the
formulas of: Chen [34], Zigrang [37], Romeo [42], Samadianfard
[28] and Cojbasic et al. [57], where they oscillate between two
cases: long equations or complicated forms as quoted in the
Table 3.

Seven formulas need more than one step to compute the fric-
tion factor: Ajinkya [45], Sonnad [48], Vatankhah [51], Brki¢ [17],
Brkic [55], Achour [56] and Vatankhah [58], except the equation
of Vatankhah [51] need for three steps to find the value of the fric-
tion factor.

For the equation proposed by Moody to avoid the iterative
methods according to the accuracy test the error is huge compared
with Colebrook-white equation where it exceeded the 10%, the
same can be reported for the equations of wood [26], Eck [27],
Chen [34]. The Moody equation can be considered as a great result
compared to the means of those days (see Fig. 2).

The equations proposed by: Swamee-Jain [29], Jain [31],
Churchill [32], Round [24], Manadilli [41], Achour [43], Ajinkya
[45], Sonnad [48], Brki¢ [17], Brki¢ [55], Samadianfard [28] have
been enhanced much more than the first group of equations, where

the error is reduced to achieve 2% for Achour’s formula for
example.

Other authors have succeed to get a good approximations even
they are not very well known like Haaland [38], where the maxi-
mum deviation is almost 1%, this latter is not the only amazing
result, where many authors have achieved to formulas with maxi-
mum error less than 1% like: Shacham [35], Zigrang and Sylvester
[37], Romeo[42], Vatankhah [51], Papaevangelou [52], Fang [53],
Achour [56], Cojbasic et al. [57], Vatankhah [58] (see Figs. 3a and
3b).

The most important groups is the latest one, where the maxi-
mum deviation is less than 1% for Shacham [35] and Papaevan-
gelou [52] only, but the rest are less than 0.5%. Many of those
formulas don’t cover the entire range of Moody diagram.

The formulas of: Zigrang and Sylvester [37], Romeo [42], Fang
[53], Achour [56], Cojbasic et al. [57], Vatankhah [58] seems cover
the almost entire range of Moody diagram.

To refine the list of the best formula, the third criterion of sim-
plicity should be taken into account where according to the Table 3
the formulas of the authors: Zigrang and Sylvester [37], Romeo
[42], Vatankhah [51], Cojbasic et al. [57] will be removed from
the group.

The formulas of Zigrang and Sylvester [37], Romeo [42] are very
accuracy but not simple according to the Table 3, where the dis-
crepancy between the two criterions of simplicity and accuracy
was met. According to the selection conditions mentioned above
the accuracy is considered first.
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Table 2
Test of the entire range of Moody diagram.

Table 3 (continued)

Author Simplicity description ~ Number of computation
Author Reynolds Relative Errmax(Af/f)% steps of the friction factor
number roughness -
Fang Simple One step
Moody 2300 <R, <10® 0<e¢/D<5-102 Af/f=1625% Ghanbari Not considered
Altshul 2300 <R, <10° 0<eg/D<5-102 Af/f>100% Brki¢ 2011a Simple Two steps
oo BRI 0sypIslol MF-Baw Smdebo e e,
8 . -2 — o

E\c/\i(amee and Jain zigg i Z» i :gs g i Z;g i : 1372 i;ﬁ: ; l(;gi/" Cojbasic Long and complicated  One step

S Re = = = Vatankhah 2014 Simple Two steps
Jain 2300 <R, <10® 0<eg/D<5-102 Af/f=433%
Churchill 2300 <R, <10® 0<eg/D<5-102 Af/f=459%
Chen 2300 <R <10®° 0<e/D<5-10% Af/f=39.9%
Shacham 2300 <R, <10®° 0<¢/D<5-10% Af/f=164% L e
Round 2300 <R, <10® 0<eg/D<5-102 Af/f=853% !
Barr 2300 <R. <10° 0<e/D<5-102 Af/f =86385% 160 —| : Tsal
Zigrang - Sylvester 2300 <R, <10®° 0< e/D<5- 102 Af/f=017% - :
Haaland 2300 <R, <10® 0<eg/D<5-10% Af/f=256% o 10—
Serghides 2300 <R.<10®° 0<g/D<5-10% Af/f>100% S 4
Tsal 2300 <R.<10® 0<eg/D<5-102 Af/f>100% S 120!
Manadilli 2300 <R, <10° 0<g/D<5-102% Af/f=331% LE 1i Ghanbari
Romeo 2300 <R, <10° 0<g/D<5-102 Af/f =0.16% © 100 || /
Achour (2002) 2300<R. <10® 0<e¢/D<5-10% Af/f=3.06% Z 4 /
Ajinkya 2300 <R <10° 0<g/D<5-102% Af/f=7% % o /< T T = =
Buzzelli 2300 <R, <10 0<gD<5-102% Af/f>100% ~ I \
Sonnad 2300 <R <10° 0<gD<5-102% Af/f=597% § 60 — j Barr
Rao 2300 <R <10° 0<g/D<5-102% Af/f =8879% £ | Altshul
Avgi 2300 <R <10® 0<g/D<5-10% Af/f>100% E oo
Vatankhah 2009 2300 <R, <10® 0<e¢/D<5-1072 Af/f=7471% =
Papaevangelou 2300 <R, <10® 0<e¢/D<5-102 Af/f=081% 20 _-
Brki¢ 2300 <R, <10® 0<e/D<5-102 Af/f=256%
Fang 2300<R.<10° 0<e/D<5-102 Af/f =057% )
Ghanbari 2300 <R, <10° 0<gD<5.102 Af/f=88.02% = L vt ] I
Brki¢ [45] 2300 <R, <108 0<g/D<5-107% Af/f=3.46% 0 o 0.02 oo 0.04 0cs
Samadianfard 2300 <R, <10®8 0<gD<5-10% Af/f=8052% Relative Roughness /D
Achour 2012 2300 <R, <10® 0<eg/D<5-10% Af/f=0366%
Cojbasic 2300 <R, <10° 0<g/D<5-102 Af/f =0175% Fig. 1. The maximum deviation (in percent) for versus different relative roughness

Vatankhah 2014

2300 <R, < 10°

0<eg/D<5-1072

Af/f = 0.146%

Values of the rejected formulas.

40 —

Vatankhah 2009
Papaevangelou
Brkic

Simple
Simple
Simple

Three steps

One step
Two steps

Table 3 1 _ . .
Assessment of the simplicity of the equations. 35 —
plicity q - ) .
Author Simplicity description =~ Number of computation é, T
steps of the friction factor 5 307
Moody Simple One step f} b \
Altshul Not considered g ¥ Wood
Wood Simple One step = -
Eck Simple One step 'a';' 20 —|
Swamee and Jain Simple One step o~
Jain Simple One step = ]
Churchill Simple One step & 1§
Chen Long and complicated  One step ; — [—=-==-
Shacham Simple One step 2‘ 10— | e —
Round Simple One step 11 \ i
Barr Not considered l¢e——Fck Moody
Zigrang and Sylvester  Long and complicated  One step * :
Haaland Simple One step T
Serghides Not considered 0o | : : T T T
Tsal Not considered ! ! ! ! ! !
[ 0.01 002 0.03 00¢ 005
Manadilli Simple One step
Romeo Long and complicated  One step Relative Roughness /D
Achour (2002) Simple One step
Ajinkya Simple two steps Fig. 2. The maximum deviation (in percent) for versus different relative roughness
Buzzelli Not considered Values of the Authors: Moody, Wood, Eck, Chen.
Sonnad Simple Two steps
Rao Not considered
Avci Not considered Based on the above analysis, it remains in the set only the equa-

tions of: Zigrang and Sylvester [37], Shacham [35], Romeo [42],
Papaevangelou [52], Fang [53], Achour [56], Vatankhah [58] which
they will be considered as the best formulas.
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09 —

| \Shachem

0.8 —

07 = Papaevangelou /

“rror (o)

>
4
4!
1
~
-
-

06 — |

0.5 —

\

Maximum Relative Error (%)

04 —
Fang

Maximum Relative 1

03 —

02 —

01 —
[ E | b I ' | L I b I
0 0.01 002 0.03 004 005

Relative Roughness £/D

Fig. 3a. The maximum deviation (in percent) for versus different relative roughness
Values of the Authors: Shachem, Papaevangelou, Fang.

Cojbasic

e T . _.

Vatankhah

Maximum Relative Error (%)
|

[ I
[ ) I . I B I b I : |
0.01 002 0.03 0.0¢ 0.0s

Relative Roughness /D

o

Fig. 3b. The maximum deviation (in percent) for versus different relative roughness
Values of the Authors: Zigrang, Romeo, Vatankhah [51], Cojbasic.

From the Tables 1-3 and according to the select conditions of
the best formula if the number of the few steps (which oscillate
between one and two steps) needed for the computation of the
friction factor were neglected, without doubt the best result is
recorded for the formula of Vatankhah [58] where the max devia-
tion is 0.146% for the entire range of Moody diagram, in the second
position we find Romeo [42] equations with 0.16% as maximum
deviation, in the third position we've the formula of Zigrang and
Sylvester [37] with 0.17% as a maximum error. The Achour’s for-
mula [56] deserves the Fourth position with only 0.366% as max
deviation for the entire range of Moody diagram (see Fig. 4).

038 —

036 —
. Achour 2012

032 —

03 —

028 —

026 —

02¢ —

022 —

02

0.15 — “Vatankhah (2014)

016 ] /

o Jpmpospesm e seng oy nns o

0 0.01 0.02 0 00¢ 005

Relative Roughness /D

Fig. 4. The maximum deviation (in percent) for versus different relative roughness
Values of the formulas: Vatankhah [58] and Achour [56].

5. Conclusions

A state-of-the art review of the most important explicit approx-
imations has been studied. Thirty three (33) formulas were ana-
lyzed using the method based on three criteria: Accuracy of the
formula, where the Maximum relative error was determined for
each approximation, two tests have been applied, firstly on the
proposed range of the approximation and the second on the entire
range of Moody’s diagram. Additional two criteria are proposed:
the coverage of the entire range of Moody diagram and the simplic-
ity of the formula. Based on the present comparative analysis,
mainly the following findings can be observed:

e Four (04) equations can deserve to be the best approximations,
the best one from these four formulas is the equation of Vatan-
khah [58],

e The formulas of Cojbasic et al. [57] and Fang [53] although they
don’t belongs to the best group, the maximum errors recorded
for both are respectively: 0.18% and 0.54% for the entire range
of Moody, they can be considered among the best approxima-
tions too.

e There are a lot of accurate explicit approximations but they are
not very known, like: Shacham [35], Zigrang and Sylvester [37],
Romeo [42], Vatankhah [51], Papaevangelou [52], Fang [53],
Achour [56], Cojbasic et al. [57], Vatankhah [58].

e For future researches, it is recommended the utilization and
successes of Soft Computing techniques such as: Artificial Neu-
ral Network (ANN), Gene Expression Programming (GEP) and
so, these tools could strongly contribute to improve results
[60-63].
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