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Abstract

In this paper, following the idea of Samet et al. (J. Nonlinear. Sci. Appl. 6:162-169,
2013), we establish a new fixed point theorem for a Meir-Keeler type contraction via
Gupta-Saxena rational expression which enables us to extend and generalize their
main result (Gupta and Saxena in Math. Stud. 52:156-158, 1984). As an application we
derive some fixed points of mappings of integral type.
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1 Introduction

It is well known that the contraction mapping principle of Banach [1] was the starting
point of great discoveries and advances in mathematics, in particular in nonlinear analy-
sis. This principle was the subject of several extensions by means of various generalized
contractions (see, for example, [2—10]). Among the most relevant results in this direction

one can give that of Meir and Keeler [11] who proved the following fixed point result.

Theorem 1.1 Let (X,d) be a complete metric space and let f be a mapping from X into
itself satisfying the following condition:

Ve >0,38(¢) >0 suchthat € <d(x,y)<e+68e) — d(f(x),f(y)) <E€.

Then f has a unique fixed point u € X. Moreover, for all x € X, the sequence {f"(x)} con-

verges to u.

As pointed out in [11], it is easy to observe that the conclusion of Banach theorem holds

for the contraction in Theorem 1.1 which is called a strict contraction, that is, it satisfies

d(fx).f(y)) <d(x,y) forx+#y.

In 1984, Gupta and Saxena proved the following fixed point result.
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Theorem 1.2 Let (X,d) be a complete metric space and let f be a continuous mapping
from X into itself satisfying

1+dx,f())d@y,f ()  dxf(x)d(y,f ()

(
d(f(x)’f(y)) = 1+ d(x,y) T d(xry)

+ azd(x,y)

forall x,y € X, x #y, where o, a3, a3 are constants with oy, 2,3 > 0 and oy + oy + oz < 1.
Then f has a unique fixed point u € X. Moreover, for all x € X, the sequence {f"(x)} con-
verges to u.

For more details on this theorem, we refer, e.g, to [12, 13].

In this paper, we establish a new fixed point theorem of Meir-Keeler type involving
Gupta-Saxena expression which extends Theorem 1.2 in the case where o1, @y, a3 €10, % .
We also apply our theoretical results to contractions of integral type.

2 Main results
Our main result is the following theorem.

Theorem 2.1 Let (X,d) be a complete metric space and let f : X — X be a continuous
mapping. Assume that the following condition holds.
For any € > 0, there exists §(€) > 0 such that

_ (L+def®))d0.f0) . dx,f(x)d.f ()
- 1+d(x,y) d(x,y)

=  d(fx).f(y)<e 1)

3e

+d(x,y) <3€ +5(¢)

forallx,y € X withx #y. Then f has a unique fixed point u € X. Moreover, lim,,_, o f" (xo) =
u for any xo € X.

Proof It is easy to observe that condition (1) implies that

forx #yorf(y) #y,

w10 < 5| ©)

L+dx,f)dly,fB)  dixf@)dy.fy)
1+d(x,) * d(x,y) * d(x’y)}

Let xp € X and consider the sequence {x,} = {f"(x0)},>0. We will prove that {x,} is a
Cauchy sequence in X. If there exists [y € N such that x;, = x;,,,, then clearly x;, is a fixed
point of f. Now assume that x; # x;,; for all k € N. Define

Sp = d(xnrxnﬂ)’ VneN.
Following (2), we obtain that

S = d(f (Xn1),f (%))
1 (1 +dn-1,%))A00 %p01) 1 A1, %0)A(%0, X41)
3 1+dx,_1,%,) " 3 A(x,-1,%,)
2 1

1 2
= gd(xn,xml) + gd(xn_l,xn) = 3+ g1

_d n-1»“n
+ 5dls,%)
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This results in

Sy <Su_1, VmeN,
that is, the sequence {s,} is decreasing. Then s, converges to some s > 0; and, moreover,
8, > 8, VYn > 0. We also have 2s, + s,_.1 — 3s as n — +00. From (1), if s > 0, there exists
8(s) > 0 such that

38 < 28, + 8,-1 <35+ 8(s)
implies

A(f ua1),f (%)) = A K1) = 54 < 5,
which contradicts s, > s. Thus, we deduce that

sy —> 0 asn— +o0.
Now, let

8'(e) = min{é(%), ;,1}.
By the convergence of the sequence {d(x,,x,,1)} to 0, there exists ky € N such that

8 (€)

d(xlrxl+l) < 6 ) Vi = kO' (3)

Now, we define the set Q2 by

3¢ &
Q= {xp ‘pzko,d(xp,xk0)< —E+ (6)}.
7 3
We will prove that
f(@cea. (4)

Clearly, for y € ©, there exists p > ko such that y =x, and d(x,,xx,) < 37—6 + % If p = ko,
we have f(y) = xi,11 € Q2 by (3). Then we will assume that p > ky. We distinguish two cases
as follows.

(1) First case: Assume that

3¢ 3e  8'(e)

7 =< d(xprxko) < 7 + 3 . (5)
First, we will show that

E < 1(1 + d(xp;xp+l))d(xkoixko+l) ld(xp:xp+l)d(xk01xko+l) + ld(xp,xko)

773 1+ d(xy, xk,) 3 A%, Xiy) 3

RAG)
<§+ = (6)
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From (5), we have

e 1
; =< gd(xp:xko)
< 1(1 + d(xp:xp+1))d(xk0:xko+l) ld(xp’xpﬂ)d(xkoyxkoﬂ) + ld(xp;xk0)~
3 1+ d(xy, %k,) 3 A(%p, Xiy) 3

Moreover, by using (3) and (5), we get

l (1 + d(xp7xp+1))d(xk07xko+l) 1 d(xpf xp+1)d(xk0,?(«'k0+1)

1
+ gd(xp,xko)

3 1+ d(xp, xx,) 3 d(xp, Xky)
1 2 d( Xy, Xk +1)A(Xp, Xps1) 1
= gd(xko»xkoﬂ) + g . d((:p:xko)p Py gd(xp:xko)
18'(e 2 1
< 3 é ) + gd(xp,xpﬂ) + gd(xp,xko)
8€) 28() 1[3¢ 68(e)
< + = +=| =+
18 3 6 3\ 7 3
€ 58(€)
=+
7 18
e &e)
<=+ .
7 3

Then we obtain

1 (1 + d(xp: xp+1))d(xk01xko+l) 1 d(xp» xp+1)d(xk0’xko+l) 1

Zd(x,,
3 1+ d(xp, %ky) T3 (%, %) "3 (e )
A
7 3

From (7) and (8), we deduce that (6) is satisfied. In this case, the inequality

3e _ (L+d(xp,f (xp))dxnysf (Kg)) A%, f (%)) (g f (X))
7= 1+ d(xy51,) * A%y 37,) + )
< 376 +8'(€)
implies by (1) that
d(f(5,).f () < =

Now, using the triangular inequality together with (3) and (9), we obtain that

A(f (%), %) < d(f (), f (%)) + A (f (0) %)
A G)
=+

7 6
3e  §(e)
— +

7 3

This implies that f(y) = f(x,) = xp.1 € Q.
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(2) Second case: Suppose that

3e
Al 01) < — (10)

From (2), we infer that

A(f (), %0,) < d(f (). f (ko)) + A (f (ko )s k)

1 (1 + d(xp: xp+1))d(xk0:xk0+l) l d(xp: xp+1)d(xk0;xk0+1)
3 1+ d(xy, xi,) 3 A%, Xiy)

1
+ g d(xp’ Xko ) + d(xk() +1> Xkq )

< ld(xpy xp+1)d(xk0;xk0+l) ld(xpr xp+1)d(xk07xk0+l)
-3 1+ d(xp, xx,) 3 d(xy, xky)

1 4
+ gd(xprxko) + gd(xk()+1’xko)' (11)

On the other hand, from (3) we have

A (Xky > Xky+1) 8'(e)
707 T <« d ,
1+ d(xp,Xko) = (xko xk0+l) <

<1

We consider the following two situations.
(i) If d(wry> Xige1) < d(xiy> %p), then (11) gives

1 1 1 4
d(f(xp)ixko) < gd(xp;xlﬁl) + gd(xprxp+l) + gd(xp;xko) + gd(xko+lrxk0)'

From (3) and (10), we deduce that

2/(8 1/3 4./68
o) <5(%5) +3(5) 3 (56)

§(e) €
= + —
3

(€) 3e
+—.
3 7

=
N

<
(i) If d(xky, Xky41) > A%y, %p), then

d(f(xp)ixko) = d(xp+lrxp) + d(xprxko)

< d(Xpe1,%p) + d(Xpy> Xk 1)

5'(e) &(e)
< +
6 6
(e
-3
8'(e) 3e
< 2=

+—=.
3 7
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In both situations (i) and (ii), we have f(y) = f(x,) = %p,1 € Q. Thus, (4) holds and

3 Y
A itey) < o5 1 210

St Vm > ko. 12)

Now, Vm, n € N satisfying m > n > ko, by (12), we have

6
A %) < AKXy Xiy) + AKX X)) < 76 +8(e)< — + ; =e.

€
7
Therefore, {x,} is a Cauchy sequence in X.

Since (X,d) is a complete metric space, then there exists u € X such that x, — u as
n — +00. The fact that x,,,; =f(x,) and the continuity of f imply that u = f(u), that is, u is
a fixed point of f.

To show the uniqueness, we assume that #’ is another fixed point of f. From (2) it follows
that

d(u’u’)=d(f(u),f(u’))<1(“"’(”'”)‘1(”"”/)) Ld(w,)d(w,u) 1

- —d(u,u
3\ 1rdww) )3T dwuw) +3d(wi)

= %d(u, u’),

which is a contradiction. This proves the uniqueness of the fixed point and completes the
proof of the theorem. O

Now, we show that the result of Gupta and Saxena [12], where o3, a5, a3 €]0, %[, is a
particular case of Theorem 2.1.

Corollary 2.2 (Gupta and Saxena [12]) Let (X,d) be a complete metric space and [ be a
continuous mapping from X into itself. Assume that f satisfies

Vx,ye X,x £y,

(1 +d(x, f(x)d, f () .\ d(x,f(x)d(y.f ()
1+d(x,y) d(x,y)

A(F.F0)) < k( +d<x,y>>, 13)

where k €0, %[ is a constant. Then f has a unique fixed point u € X. Moreover, Vx € X, the

sequence {f"(x)} converges to u.

Proof Let € > 0. If we take

8(€) = e(% —3),

then, whenever

3¢ < LHd@f@)dly.f0) | dwf@)d0.fO) |,

- 1+d(x,y) * d(x,y) (,9) <3€ + 6,
d(x, d(y, d(x, d(y,
L s,

< k(Se + 8(6))
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= 3ke + kd(¢)

k
=3ke + 76 — 3ke

Notice that since k < %, then 7 > 3e. Thus the condition (1) of Theorem 2.1 is satisfied,
which completes the proof. 0

Notice that the contraction mapping of Gupta and Saxena is a not a strict contraction,
but k-contraction. Therefore, Theorem 2.1 is an extension of Gupta-Saxena result.

3 Applications
In this section, following the idea of Samet et al. [14], we will give an integral version of
Gupta-Saxena result.

We start with the following theorem.

Theorem 3.1 Let (X,d) be a metric space and let f be a self-mapping defined on X. Assume
that there exists a function p from [0, +oo[ into itself satisfying the following:
(i) p(0) =0 and p(t) >0 foreveryt>0;
(i) p is nondecreasing and right continuous;
(ili) for every € >0, there exists 5(€) > 0 such that

. - ((1 +dsf @A) | desf (6)A0,f )
=F 1+d(xy) ()

= p(3d(f(x).f()) <3¢

+ d(x,y)) <3¢ +68(¢€)

forallx,y e X withx #y.
Then (1) is satisfied.

Proof Fix € > 0. Since p(3¢€) > 0, by (iii), for p(3¢) there exists 6 > 0 such that

1+ A& fNA0L0) e f@)d,f0)
P(3€)§P< e +d(x,y))<p(36)+e
— (A 0) < P3O (14)

From the right continuity of p, there exists § > 0 such that p(3¢ +5) < p(3€) +0. Fixx,y € X,
x # y such that

3¢ < (1 +d(x,f(x)dy,.f () . dx,f(x)d,.f ()
- 1+d(x,y) d(x,y)

+d(x,y) <3€ + 8.

Since p is nondecreasing, we deduce

ot = o LEALEDAOS ) | A0 )

Ledwy) dwy)
< p(3e +8) < p(3¢) + 6.
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Then, by (14), we have

p(3d(f(x).f(9))) < p(3e),
which implies that d(f(x),f(y)) < €. Then (1) is satisfied and this completes the proof. O
Now, we denote by E the set of all mappings /4 : [0, +oo[ — [0, +00[ satisfying:
(i) A is continuous and nondecreasing;

(if) 4(0) =0 and A(£) > 0 for all £ > 0.

Corollary 3.2 Let (X, d) be a metric space and let f be a mapping from X into itself. Assume
that for each € > 0, there exists §(€) such that

3 ( L +dx, f))dy.f(y)  dxfx)dy,f())
e<h +
1+d(x,y) d(x,y)

= h(Sd(f(x),f(y))) < 3¢

+ d(x,y)) < 3¢ + 8(¢€)

forall x,y € X, with x # y, where h € B is a given function. Then (1) is satisfied.

Proof This follows immediately from Theorem 3.1 since every continuous function / :
[0, +oo[ — [0, +o0] is right continuous. (]

As a consequence of this corollary, we have another result.

Corollary 3.3 Let (X, d) be a metric space and let f be a mapping from X into itself. Let ¢
be a locally integrable function from [0, +oo[ into itself such that fot @(s)ds >0 forall t > 0.
Assume that for each € > 0 there exists §(€) such that

A+dxf )AL B) | dxf®))d(yf (1)
+ xlji;(x,y)(yf(y + xf;c(x)y(i/f()’ +d(x,9)

3¢ 5/ o(t)dt < 3€ + 8(€)
0

3d(f(x)f ()
= / o(t)dt < 3e. (15)
0
Then (1) is satisfied.
Now, we are able to obtain an integral version of Gupta-Saxena result.

Corollary 3.4 Let (X,d) be a complete metric space and let f be a continuous mapping
from X into itself. Let ¢ be a locally integrable function from [0, +oo[ into itself such that
fot @(s)ds >0 forall t > 0. Assume that f satisfies the following condition.

Forallx,ye X,x#y,

A+dxf))dYS ) | dlxf®)dyf ()
+d(xf (x 44 ;(x’y) +d(x)

3d(f (x)f () 1+d(x)
/ o(t)dt < / vyt 1o
0 0

where |1 €10,1[. Then f has a unique fixed point u € X. Moreover, for any x € X, the se-
quence {f"(x)} converges to u.
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Proof Lete > 0.Itis easy to observe that (15) is satisfied for §(¢) = 36(% —1). Then (1) holds
and this completes the proof. O

Remark 3.5 Note that the result of Corollary 2.2 can be established from Corollary 3.4
by taking ¢ =1 and u = 3k, k €]0, % [. Clearly, for this choice, (16) becomes

AFF) = k(u +daf @)A0S) | desf G)A0S) | d(x’y))

1+d(x,y) d(x,y)

which is exactly the contractive condition of Corollary 2.2.
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