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a  b  s  t  r  a  c  t

The  objective  of  multiple  description  coding  (MDC)  is to  encode  a source  into  multiple  descriptions  sup-
porting  different  quality  levels  of  reconstruction.  In  this  paper, we  use  the multiple  description  transform
eywords:
ultiple description coding
iscrete wavelet transform (DWT)

mage coding

coding  (MDTC)  algorithm  based  on  the wavelet  transform  that  has  been  shown  to  be robust  to  packet
losses  allowing  a graceful  quality  degradation.  The  case  of  transmitting  still  images  with  four  descrip-
tions  is considered.  We  propose  to  use  subband  uniform  quantization  with  different  quantization  steps,
optimized  using  a genetic  algorithm  (GA),  when  compressing  to  a target  bit-rate.  Simulation  results  show
that  the  proposed  method  offers  substantial  improvements  in the  case  of  packet  loss  when  compared  to
previously  reported  work  that  applies  uniform  quantization  with  a fixed  step  size.
enetic algorithm (GA)

. Introduction and problem description

Multiple description coding (MDC) is a joint source-channel
oding whose objective is to encode a source into several descrip-
ions in such a way the quality of the recovered signal increases
ith the number of received descriptions. To accomplish this goal,

ach description alone must carry a sufficient amount of informa-
ion about the original source. This necessarily means that there is

 certain amount of common information and, hence, correlation
etween the descriptions.

Many approaches have been proposed to realise MDC. The first
D coder was designed by Vaishampayan [1] in which multiple

escription scalar quantizers were used in an extension of the old
PEG coder. Other methods for the design of MDC  coders use corre-
ation inducing transforms (multiple description transform coding:

DTC) [2–5]. Pereira et al. [6] and Sumohana et al. [7] have studied
DC techniques based on wavelet transform, but not consider-

ng correlating transforms in wavelet domain. A wavelet transform
ased MDTC coder for coding still images has been addressed by
helil et al. [8].

The scheme proposed in [8],  which constituted an improvement
f the MDTC coder proposed by Goyal et al. [4,5], considers the

ransmission of images using MDTC based on wavelet transform
or the case of four descriptions. The four generated descriptions
representing the four subbands obtained after applying a first level

∗ Corresponding author. Tel.: +213557902446.
E-mail addresses: k khelil@yahoo.fr (K. Khelil), ahu@cs.stir.ac.uk (A. Hussain).

434-8411/$ – see front matter ©  2011 Elsevier GmbH. All rights reserved.
oi:10.1016/j.aeue.2011.03.011
© 2011 Elsevier GmbH. All rights reserved.

wavelet transform) are uniformly quantized with a constant quan-
tization step. Unfortunately, we noticed that uniform quantization
is performed within each subband with the same quantization step
even though the four subbands do not have the same energy and
they are not equally important.

In this paper, we  propose to improve the technique described in
[8] by using subband uniform quantization. The proposed approach
employs four levels of quantization estimated according to the
relative energy within each subband and are optimized heuristi-
cally with a genetic algorithm (GA) [9].  Simulation results show an
improvement in the objective measure of peak signal to noise ratio
(PSNR) and in the subjective perceptual quality of the reconstructed
images.

The rest of this paper is organized as follows. In Section 2, we give
a brief description of the multiple description transform coder. Sec-
tion 3, presents our proposed wavelet transform based MDC  coder.
The optimization method using genetic algorithm is described in
Section 4. The simulation results are presented in Section 5. Finally,
some concluding remarks are given in Section 6.

2. Multiple description transform coding (MDTC)

Contrary to conventional transform coding (such as the DCT),
where the transform is used to decorrelate the input image, the
MDCT coding system uses a transform that introduce controlled

amount of correlation among the transformed coefficients, based
on linear transforms, mapping N input variables to N coefficients.
The transform coefficients are partitioned into packets such that in
case of packet loss, the lost coefficients can be estimated from the

dx.doi.org/10.1016/j.aeue.2011.03.011
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.de/aeue
mailto:k_khelil@yahoo.fr
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Fig. 1. MDTC DWT-based im

eceived ones. Generally, the multiple description transform coding
f a source vector x involves the following steps [8]:

. Use a decorrelate transform (e.g. DCT, DWT, . . .);

. Quantize the transformed coefficients;

. Transform the quantized vector with a discrete transform;

. Entropy code the resultant components.
When all components are received, the reconstruction process is
o exactly invert the transform. The distortion is precisely the quan-
ization error. If some coefficients are lost, they are estimated from
he received coefficients using the statistical correlation introduced

Fig. 2. Genetic algorithm flowchart.
oder with four descriptions.

by the correlating transform. The estimation is then generated by
inverting the transform as before. For more details of the coding
and reconstruction procedures the reader is referred to [4,8].

3. Multiple description wavelet based coding using
subband uniform quantization

Subband decomposition using discrete wavelet transform
(DWT) is one of the best performing techniques among differ-
ent transform based image coding techniques [9]. In this paper,
the subband decomposition is done through the two-dimensional
DWT using the Daubechies biorthogonal wavelet transform which
is widely used in image compression [10,11] and also adopted in
the JPEG2000 standard for image coding [12]. The first level of

decomposition splits the image into four subbands consisting of one
smooth LL subband, and three detail subbands, vertical HL subband,
horizontal LH subband, and diagonal HH subband [12]. Inherently
the wavelet decomposition concentrates most of the energy in the

Fig. 3. Average PSNR versus bits per sample, ‘Lena’ image.
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Fig. 4. Average PSNR versus bits per sample, ‘Goldhill’ image.

L subband, while the rest is distributed among all the three detail

ubbands with the least energy contained in the HH subband [9].
herefore, this suggests the use of a uniform quantization scheme
here the quantization step sizes are a function of subband energy.
onsequently, the most important information (LL subband) can be

ig. 6. Lena image reconstruction results for MDTC DWT/UQ at 2.0 bits/sample (a) reco
mage  from 3 received packets (PSNR = 43.12 dB); (c) reconstructed image from 2 rece
PSNR = 32.67 dB).
Fig. 5. Average PSNR versus bits per sample, ‘boat’ image.

quantized finely while the coefficients representing high frequency

content (HH subband) can be quantized coarsely.

The MDTC/DWT coder, suggested in [8],  is implemented as fol-
lows:

nstructed image from the 4 received packets (PSNR = 46.88 dB); (b) reconstructed
ived packets (PSNR = 36.12 dB); (d) reconstructed image from 1 received packet
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ig. 7. Lena image reconstruction results for MDTC DWT/SUQ at 2.0 bits/sample (a
mage  from 3 received packets (PSNR = 41.97 dB); (c) reconstructed image from 

PSNR  = 34.44 dB).

. The source image is transformed by the 1-level biorthogonal B9/7
wavelet transform resulting in the four subbands: LL1, HL1, LH1,
and HH1.⎧⎪⎨
⎪⎩

LL1 → description1
HL1  → description2
LH1 → description3
HH1 → description4

. The four vectors (descriptions) are formed.

. The DWT  coefficients (the four vectors) are uniformly quantized
with a quantization step �.

. Correlating transform is applied to the 4 vectors.

. Entropy coding akin to that of JPEG is applied to the 4 vectors
[5,8].

In step 2, we suggest to use subband uniform quantization
ased on the fact that the coefficients in different subbands will
e quantized by uniform quantizers of different step sizes instead
f uniform quantization with a constant quantization step. This
WT-based image coder is depicted in Fig. 1. Each subband or
escription desi will be attributed a quantization step �i. The prob-
em is to determine, for a given bitrate, the set of quantization steps
�1, �2, �3, �4} corresponding respectively to descriptions 1, 2,

 and 4 that minimizes the reconstruction distortion in the case of
acket losses. To ensure that the uniform quantization is performed
nstructed image from the 4 received packets (PSNR = 43.96 dB); (b) reconstructed
ived packets (PSNR = 38.09 dB); (d) reconstructed image from 1 received packet

according to the energy contained in each subband, the four quanti-
zation step sizes need to verify the relationship �1 < �2 ≤ �3 < �4
or �1 < �3 ≤ �2 < �4. We solve this optimization problem heuristi-
cally using a genetic algorithm (GA) approach described in the next
section.

4. Optimization method using genetic algorithm

The genetic algorithm (GA) [13] is a well known method for
solving both constrained and unconstrained optimization prob-
lems that is based on natural selection and natural genetics. Unlike
many conventional optimization methods, which are generally sin-
gle path searching algorithms, the GA starts searching from several
points and evolves toward an optimal solution.

Given a target bitrate Rt, an outline of the genetic algorithm used
to optimize the 4 quantization steps proceeds as follows:

1. Initial population
We generate an initial random population of 20 chromosomes

(suitable solutions for the problem). Each chromosome is a string
corresponding to a vector of 4 quantization steps � ={�i, i = 1,
. . .,  4}. So, in our case, the initial population is composed of 20

real valued vectors of size 4 each.

2. Fitness function
Evaluate the fitness f(�) of each chromosome � in the pop-

ulation. The fitness function assigns to each individual in the
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ig. 8. Goldhill image reconstruction results for MDTC DWT/UQ at 2.0 bits/sample 

mage  from 3 received packets (PSNR = 40.86 dB); (c) reconstructed image from 

PSNR = 28.12 dB).

population a numeric value that determines its quality as a
potential solution. The fitness denotes the individual (chromo-
some) ability to survive and to produce offspring. In our case, the
fitness is the square of the distance between the target bitrate Rt

and the actual bitrate Ra:

f (�) = (Ra(�) − Rt)
2

subject to the constraints:

{
�1 < �2 ≤ �3 < �4
or
�1 < �3 ≤ �2 < �4

. Creating the next generation
At each step, the genetic algorithm uses the current popula-

tion to create the children that makes up the next generation.
The algorithm selects a group of individuals in the current popu-
lation, called parents, who contribute their genes (entries of their
vectors) to their children. In the GA we used, the roulette wheel
selection is exploited [14]. The algorithm selects individuals that
have better fitness values of parents.
In total, three types of children are generated:
(a) ‘Elite’ children are the individuals in the current generation

with the best fitness values. These individuals automatically
survive to the next generation.
onstructed image from the 4 received packets (PSNR = 46.80 dB); (b) reconstructed
ived packets (PSNR = 30.34 dB); (d) reconstructed image from 1 received packet

(b) ‘Crossover’ children are created by combining the vectors of a
pair of parents. Scattered crossover with a crossover fraction
equals to 0.8 is used in this paper [14]. Scattered crossover
creates a random binary vector and selects the genes where
the vector is a 1 from the first parent and the genes where
the vector is a 0 from the second parent, and combines the
genes to form the child.

(c) ‘Mutation’ children are created by introducing random
changes, or mutations, to a single parent. In this work we have
employed Gaussian mutation [14] where a random number
is added to each vector input of an individual, which is taken
from a Gaussian distribution centred at zero.

The above process is repeated until terminal conditions are sat-
isfied; we denote the best chromosome as a solution, which is
regarded as the optimal solution of the optimization problem. Fig. 2
shows the block diagram of the GA optimization process.

5. Simulation results

In order to verify the performance of the proposed quantization

method, we  apply the two  previously mentioned quantization tech-
niques to real images. Hence, we end up with two coders: the first
one is the conventional MDTC/DWT based on uniform quantization
with fixed step size referred to as MDTC DWT/UQ, the second coder
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Fig. 9. Goldhill image reconstruction results for MDTC DWT/SUQ at 2.0 bits/sample (a) reconstructed image from the 4 received packets (PSNR = 44.91 dB); (b) reconstructed
image  from 3 received packets (PSNR = 40.79 dB); (c) reconstructed image from 2 received packets (PSNR = 33.58 dB); (d) reconstructed image from 1 received packet
(PSNR  = 31.60 dB).

Fig. 10. Boat image reconstruction results for MDTC DWT/UQ at 2.0 bits/sample (a) reconstructed image from the 4 received packets (PSNR = 39.67 dB); (b) reconstructed
image  from 3 received packets (PSNR = 38.92 dB); (c) reconstructed image from 2 received packets (PSNR = 32.88 dB); (d) reconstructed image from 1 received packet
(PSNR = 28.41 dB).
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Fig. 11. Boat image reconstruction results for MDTC DWT/SUQ at 2.0 bits/sample (a) reconstructed image from the 4 received packets (PSNR = 39.35 dB); (b) reconstructed
i 2 rece
(

i
t

d

‘
q
f
b
t
a
p
f
a
n
r
b
2
p
i

w
o
t
v

mage  from 3 received packets (PSNR = 38.84 dB); (c) reconstructed image from 

PSNR = 30.44 dB).

s the proposed MDTC/DWT based on subband uniform quantiza-
ion referred to as MDTC DWT/SUQ.

Redundancy of 0.1 bit/sample is evenly allocated to the four
escriptions. The bit rate is estimated by sample scalar entropies.

Using the 512 × 512 ‘Lena’, 512 × 512 ‘Goldhill’ and 512 × 512
boat’ as test images, the comparison between the two uniform
uantization methods can be better appreciated in Figs. 3–5,  where,
or each technique, the average PSNR is reported as a function of the
it rate for the cases of one, two and three packets dropped. From
hese curves, it can be seen that, in the case of one packet lost, both
pproaches yield the same results. Whereas, when two  or three
ackets are lost the MDTC DWT/SUQ technique generally outper-
orms MDTC DWT/UQ in terms of PSNR as the bitrate increases. The
verage performance gains amount to an interesting value [15] of
early 1.9 dB, 2.5 dB and 1.7 dB for Lena, Goldhill and boat images,
espectively. Figs. 6–11 respectively compare the Lena, Goldhill and
oat images reconstructed by both coders for the situations of 0, 1,
, and 3 packet lost. It can be easily noticed that, using the new
roposed coder MDTC DWT/SUQ, the visual quality is significantly

mproved.
However, the MDTC DWT/SUQ based on GA tends to be slow
ith respect to the MDTC/DWT coder suggested in [8] because
f the GA iterative process that involves many candidate solu-
ions. This is primarily due to the fitness function, which is a
ery important part in most GA, but it is the weakest link which
ived packets (PSNR = 35.08 dB); (d) reconstructed image from 1 received packet

usually requires the most amount of time to run. In our sim-
ulation, the GA evaluates the fitness candidate solution using
f(�) = (Ra(�) − Rt)2 and this takes at most L2 + L multiplications and
2 × L additions for and L × L image. Conducting many experiment
runs, an average number of fitness evaluations, in estimating the
quantization steps, is about 600 evaluations per GA execution is
obtained for the three 512 × 512 test images used. Therefore, the
required numbers of operations are 1000 × (L2 + L) multiplications
and 1000 × (2 × L) additions. Using a 512 × 512 image, the total
number of operations required for the optimization of the quantiza-
tion steps is about 160 millions operations which is insignificant as
an emerging specialized digital signal processors (DSP) using FPGAs
(field-programmable gate array) can deliver over 1 TeraMACS (1012

multiply-accumulates per second) [15–18].

6. Conclusion

In this paper, we have proposed a new MDTC wavelet transform
based scheme for robust image coding and transmission through
unreliable networks for the case of four descriptions. The main
novelty lies in the fact that the considered coder applies a sub-

band uniform quantization (with four quantization steps) to the
four descriptions instead of using a uniform quantizer with a fixed
quantization step. The proposed quantization strategy takes into
account the importance of the LL subband (representing the first
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escription) obtained after application of the wavelet transform.
n addition, a GA based optimization approach is employed to
ptimize the quantization steps for minimizing the reconstruction
istortion in the case of packet losses. The proposed scheme has
een applied to typical test images, where it has been shown to

mprove the image quality reconstruction both objectively and sub-
ectively compared to our recently reported approach employing
niform quantization with a fixed step size [8].
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