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Abstract- In this paper, a new Rigorous approach of a
wave iterative method, this  method is applied to active
circuits. It consists in successive reflections between the
circuit plan and its two sides. It also has an alternative
behavior between space and spectral domains. In
addition, the discontinuity plane is divided into cells and
characterized by a scattering operator matrix depending
on the boundary conditions. In the present study, we
introduce a new technique based on the wave concept
combined with the 2D-FFT algorithm (fast modal
transformation FMT). Consequently, a high
computational speed can be achieved. [1]

I. INTRODUCTION

Planar and stratified circuits are characterized by one or
several planes containing thin metallic circuits including
active elements, air bridges, and lines and so on. Between
these planes, the dielectric medium is most often homogenous
and the problem is referred as two-dimensional. The more
suitable methods for the simulation of these circuits are based
on an integral formulation solved with a method of moments
although some other three dimensional approaches are
successfully used. [2]

The full wave methods are mostly used as electromagnetic
field can be known at any point. An integral formulation
permits these methods to be adapted to study some particular
structures, among these methods are:
 The least squares method this is easy to develop, but

the numerical treatment requires an important means
when the studied circuit has a complex geometry. [3]

 The mode-matching method this consists of
determining all the modes at both sides’ discontinuity
without taking it into consideration. This method is
ideal when we can determine and know numerically all
the modes. On the contrary, when the determination of
the proper modes cannot be done numerically, the
mode-matching method becomes difficult to bring into
operation and requires significant computing time. [4]

 The source method this uses an excitation on the plane
of the circuit and is easy to formulate, since the
solution of the problem is obtained by solving a
deterministic system. Thus, the iterations needed to
solve homogenous systems, in the Eigen value
methods, are avoided. The numerical solution is based
the verification of the boundary conditions. The source
current density is described by an arbitrary function.
The solution of the system will give a model of the
current density on all the circuit with the help of
appropriate trial functions.[5]

In this paper, a new iterative method is applied to active
circuits. It consists in successive reflections between the
circuit plan and its two sides. It also has an alternative
behavior between space and spectral domains. In addition, the
discontinuity plane is divided into cells and characterized by a
scattering operator matrix depending on the boundary
conditions. In the present study, we introduce a new
technique based on the wave concept combined with the 2D-
FFT algorithm (fast modal transformation FMT).
Consequently, a high computational speed can be achieved.
[5]

II. THEORETICAL FORMULATION OF THE WAVE
CONCEPT ITERATIVE PROCEDURE (W.C.I.P)

II.1 Definition of the waves
Contrary to the electromagnetic fields, the waves are

defined with regard to a chosen surface which should be
closed or leaning on the boundaries of the domain   where
the fields are defined. Saying that the waves are S-related
means that the change in S changes the waves.

Let M a point, n  the normal unitary vector on S,

HE and the tangential electric and magnetic fields on S.

the waves BA and are defined as:

Figure 1. Definition of the S-related waves.
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BA and are two tangential vectors on S and 0Z  an arbitrary

impedance.

With the usual definition of the nHJ  (2)
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II.2 Method formulation
The equivalent circuits previously characterized for the

electrical and magnetic tangential fields lead to two scattering
operators that relate the incident and reflected waves.

Figure 2- iterative process.

The spectral scattering operator ̂  is deduced from the

admittance operator Ŷ in YEJ  and the wave’s definition
in (3)
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Where ̂  relates the incident and the reflected waves in the
spectral domain;

AB  ˆ (5)

The space scattering operator Ŝ is deduced from the
equivalent circuits on each sub-domain of S. the boundary
conditions expressed for field in:
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are simply transposed to waves.

Ŝ relates the incident and reflected waves in the space
domain

BSA ˆ (7)
Finally the integral formulation leads to a system based on (5)

and (7) with a space localized wave source 0A

AB
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ˆ

ˆ
0  (8)

The fast modal transform (FMT) assures wave transformation
from the spatial to the spectral domain, and its inverse FMT-1

transformation back. The multiscale formulation requires a

preliminary determination of the operator Ŝ . [6]

III.  PROBLEMS MODELING AND RESULTS

III.1 Iris in a metallic waveguide
To check the present approach we consider the structure

illustrated in fig.3

Figure 3- iris in a waveguide

It consists of the iris in a metallic waveguide, the
dimension of this structure are ------- and the substrate
characteristics are ------- and thickness of ----mm
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-c- – Convergence of the impedances xZ and yZ compared

to the iteration count
Figure 4- The diagrams resultants

In fig.4 –a-b-, the electric and the current density fields in
the iris is represented, these fields have satisfy the boundary
conditions on the sub-domains [metal-dielectric].

III.2 Application in planar circuit
This analysis is applied to calculate the S  parameters of a

rectangular waveguide including a Gunn diode.
The source is not an incident wave but an excitation source

displayed on the surface of the circuit.

-a-

-b-
Figure 5- (a)  typical planar circuit  (b) discontinuity plane.

The discontinuity plane   is includes three sub-domains,
isolated, metal, source and diode. The equivalent circuit of the

Gunn diode dZ is shown in fig.6. Moreover; in the

discontinuity plane , the relationship between the incident

and reflected waves can be obtained by applying the
following boundary conditions.

a. On the dielectric, the tangential magnetic field is
zero and the electric field is continuous.

b. The tangential electric field is zero on the metal.
c. On the diode, the total electric field is continuous

and is equal to dZ multiplied by the total current in

this region.

Let dism HHHH ,,, the indicator functions of the metal,

source; insolent, diode (equal to one on the considered

medium, and zero elsewhere) and dism SSSS ,,, the

corresponding scattering matrix:
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Figure 6  convergence of 11S and of inZ
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CONCLUSION

The principles and advantages of an iterative method based
on a wave concept known as the wave concept iterative
procedure are outlined, And give a good result.
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