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Abstract 
 

Face localization using neural network is presented in this 

communication. Neural network was trained with two 

different kinds of feature parameters vectors; Zernike 

moments and Eigenfaces. In each case, coordinate vectors 

of pixels surrounding faces in images were used as target 

vectors on the supervised training procedure. Thus, trained 

neural network provides on its output layer a coordinate's 

vector ( , )ρ θ  representing pixels surrounding the face 

contained in treated image. This way to proceed gives 

accurate faces contours which are well adapted to their 

shapes. Performances obtained for the two kinds of 

training feature parameters were recorded using a 

quantitative measurement criterion according to 

experiments carried out on the XM2VTS database.  

 

1.  Introduction  

 

In the last two decades, face detection received a growing 

attention by researchers concerned with Human-Machine 

communication. Thus, many face detection methods and 

algorithms were developed for images and videos which 

try to overcome different constraints like difference in 

brightness, pose and movement, faces appearance (glasses, 

beard and moustache), execution time, etc. These methods 

were useful for more complex techniques in Human-

Machine communication like face recognition (identity 

check), gesture communication and face expression 

analysis and recognition.  

According to Hjelmas and Low [1], face detection 

methods can be classified in 2 categories: “global 

approach” which consists in entirely seeking face and 

“components approach” which consists in finding the face 

through localization and regrouping of its components 

(eyes, nose...). They can be also classified according to 

face characteristics used like color, shape and movement. 

Two global methods are presented and compared in this 

work. These two methods differ only on the first step 

which is the way to characterize the image to be treated. 

The first exploits geometrical characteristics of the face 

and the second uses projection on image sub-space 

variations. In the second step, a neural network (trained 

beforehand) uses the feature vector produced in the first 

step to output a coordinate's vector for pixels of the face's 

probable contour contained in the treated image. To make 

objective measure and comparison of methods 

performances we use a quantitative measurement criterion 

[2]. 

Geometrical moments, particularly Zernike ones, are 

used here for their capacity to compress the geometrical 

information, contained in the treated image, in a rather 

reduced parameters vector by projection of the image on 

an orthogonal basis [3]. In the same way, the Eigenfaces 

characterize the image by a reduced parameters vector 

representing variations of the treated image around an 

average image and according to some variation directions 

[4]. This compression characteristic makes them very 

adapted to the training of classifiers such as neural 

networks, which often need, on their input layer, feature 

vectors reduced in size but rather representative of the 

element subject to the classification. Zernike moments 

were particularly used for face recognition [5,6] and target 

recognition in general [7]. Eigenfaces were largely used in 

face detection and recognition directly [4,8] or through 

neural networks [9]. 

In section 2, we explain Zernike moments and 

Eigenfaces formulations. Section 3 develops the proposed 

way to their practical implementation. In section 4 we 

expose the measurement criterion and in section 5 

experimental results are presented. Section 6 concludes. 

 

2.  Zernike moments and Eigenfaces   

     Formulation 
 

2.1. Zernike moments 
 

Zernike moments are part of the geometrical moment's 

general theory. They were introduced initially by              

F. Zernike. Zernike moments are built on a set of 

orthogonal polynomials which allow construction of 

orthogonal base given by Eq. (1). 
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 with 0, 0, ,n m m n n m n≥ ≠ < − < and  n k− even. 

)(R mn, ρ  are the orthogonal radial polynomials, n  is 

the order of the moment and m  the repetition factor (the 

smoothness of the required details) at this order. ρ  and θ  

are respectively the radius and the angle of function's 

treated point.   

This base being orthogonal only inside the unit circle, 

the image to be projected must be mapped according to 

Eq.(2) which gives relations between the relative 

coordinates ( , )i j of the initial image pixels and the new 

pixels coordinates ( , )
i j

x y of the mapped one. 
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where ( , )P Q are dimensions of the image to be projected, 

i and j are indices of the point to be mapped and ( , )c d  

defines couple of parameters allowing to map the function 

inside the unit circle (completely: 1 / 2c = − and 

d c= −   or   partially: 1c = − and 1d = ).  

The projection of a numerical function ),( ij yxf  on the 

basis functions of Eq.(1) gives the Zernike moments 
mnZ ,

 

according to Eq.(3). 
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where: *  denotes the complex conjugate of the function. 

 

Traditional formulation of Zernike moments is very 

easy to implement but its computational time cost is very 

high. Researchers tried to overcome this major handicap 

by developing new formulations to enhance the speed 

computation [10,11]. The proposed algorithm in [11] 

(which is adopted here) has the advantage to preserve the 

same accuracy of computation as in the traditional 

formulation. To lead to this form of representation, 

previous equations are rewritten and reorganized  in Eq.(4) 

which reduces the computation of Zernike moments for 

any image to the computation of a linear combination of 

kmn ,,β  and  
kmX ,
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2.2. Eigenfaces  
 

“Eigenfaces” was the first method successfully used for 

face treatments like face detection and face recognition 

[4]. This method is based on the decomposition of the 

treated image according to some directions of variation 

around an average image. Decomposition is performed on 

a set of representative images of the characteristics to be 

classified. Based on Principal Components Analysis 

(PCA), Eigenfaces method uses SVD operation (Singular 

Values Decomposition) on a matrix containing a set of 

vectors, representing images, to determine their principal 

variety directions. In the case of face images, these main 

directions were called Eigenfaces.  

To use Eigenfaces method, we first construct a 

projection space by operating SVD on the covariance 

matrix 
xC  given by Eq.(5). This operation gives the 

eigenvectors and eigenvalues of 
xC  arranged according to 

the variety directions importance.  
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where
1 2( , ,..., )LX I I I=  is an K L×  face’s matrix   with 

L  the number of faces and K P Q= ×  the               

dimension of the face vector 
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The set of eigenvectors obtained is used as projection 

space for images to be treated.    

 

3.  Methods implementation 
 

Our contribution, with the goal to localize face in image, 

consists in three propositions:  

1.   The first one consists in the use of Zernike moments 

as training feature vectors for a neural network. Indeed, in 

addition to their capacity to compress geometrical 



information of an image in a reduced vector, Zernike 

moments are not abstract parameters. Each one of them 

has a significance related to the statistical characteristics 

of the image which they represent such as the surface, the 

total mass center, mass centers in horizontal and vertical 

directions, horizontal and vertical symmetry, etc. Thus, the 

particular shape and contents of a face, geometrically rich 

by details of elements that it contains (eyes, mouth, etc), 

will be well represented in the set of Zernike moments.  

2.   The second one is the manner in which methods 

implementation will be done. We found that methods 

developed for face detection usually use rectangular or 

elliptical windowing research of the face on the treated 

image. This procedure gives non precise face contours and 

requires additional refinement operations. In our work we 

propose to train the neural network on target vectors which 

contain pixel coordinates obtained by manually delimiting 

faces in training images. This procedure will produce 

trained neural networks which provide precise and adapted 

face contours according to their shapes. 

3.   The last proposition consists of using a quantitative 

measurement criterion to record and compare the results 

obtained by each implemented method. The criterion is 

based on the compute of methods performances according 

to the number of pixels correctly and wrongly detected as 

belonging to the face in the treated image.  

Figure 1 gives in a block diagram form the proposed face 

localization system.  

 

 
 

    Figure 1: General diagram of  face localization system 

 
The implementation of our method is mainly based on 

the training phase which will be achieved in four stages: 

(i)   Computation of Zernike moments and Eigenfaces 

vectors for all the N images of the work database. 

(ii)   Construction of the training database by randomly 

taking 
1

N  images from the work database (
1

N << N ) and 

their corresponding Zernike moments vectors 
i

Z  and 

Eigenfaces vectors
i

E . 

(iii)   Manual   delimitation of   the face area in each image   

of   the   training   database   by   a   set   of   points 

{ }
1
, ,

i d
P PΩ = L  representing its contour. 

(iv)    Training   of   neural   networks   on the 
1

N sets of 

couples ( , )
i i

Z Ω or ),( ii EZ . 

Neural networks trained with Zernike feature vectors 

learn to extract statistical information contained in Zernike 

moments and in their interactions which are closely related 

to the area of the required face. Those trained with 

Eigenfaces feature vectors learn to identify the main 

variety directions introduced by face in training images. 

To test and measure performances of the network 

obtained after training operation, we proceed, according to 

Figure 1, on all 
1

N N−  images remaining in the work 

database. Face localization procedure will be the same for 

the two methods compared in this work and will be done 

in two steps:  

• During first step, an image is presented to a program 

which extracts Zernike or Eigenfaces feature vector. 

• At the second step, a back-propagation neural 

network, beforehand trained, receives on its input 

layer the feature vector which was computed in first 

step. In response, it gives on its output layer a 

coordinate's vector for a set of points representing the 

probable face contour contained in the treated image. 

Results obtained by each method according to 

equivalent parameters and for the same images are then 

quantitatively compared. 

 

4.  Quantitative measurement criterion  
 

To give an objective appreciation of results given by the 

studied methods, we propose a new way to calculate the 

detection rate based on the relation between the number of 

pixels correctly and wrongly detected as pixels of the face 

and the number of face pixels in each treated image. To do 

so, all testing database images were manually segmented 

in three regions like it is shown in Figure 2. 

 

 

 
 

   Figure 2: Examples of regions definition. Top: original  

                   image,  Bottom: mask of regions 

 
First region (white one on the masks of Figure 2) contains 

the W  pixels which represent the essential components of 

the face (brows, eyes, nose, mouth and surrounding 

pixels). The second region (grey one) contains pixels 

surrounding the first region and belonging to the face. The 

last region contains all the B  pixels of the image which 

do not belong to the face. For the detection system, the 

first region is one which has to be contained imperatively 

in the resulting contour and the third one has to be 



imperatively discarded from it. The second region is 

optional and has no effect on the computed results. We 

define two types of measures; Good detection rate (Gdr) 

and Quality detection rate (Qdr). 

        1 .100
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where 
1

W and 
1

B are respectively the number of pixels 

correctly and wrongly detected as belonging to the face 

and A  is the number of all pixels of the image. 

The Gdr measures how many pixels from the essential 

parts of the face are detected. The Qdr gives a more strict 

measure of face detection taking pixels of image that 

wrongly detected as belonging to the face into account. 

These two rate measures are complementary. Having only 

Gdr we don’t know how many pixels are wrongly detected 

as belonging to processed face. In the same way, having 

Qdr only we don’t know how many pixels belonging to 

the face are not detected. On Figure 3 we illustrate this 

fact on some examples with recorded Gdr and Qdr values.  

 

       

       
                   
Figure 3:  Top: original images. Bottom: complementary 

                   relation between Gdr and Qdr measures  

 
On Figure 3.a we have the same bad Qdr (about 41%), 

with two different Gdr( 54% and 70%). On Figure  3.b it’s 

the same situation for a good Qdr (about 83%) with two 

different Gdr values (94% and 100%). To finish, we give 

on Figure 3.c an example of a face perfectly detected with 

Gdr and Qdr at 100%. Thus, to have a correct appreciation 

of recorded results, each one of Gdr and Qdr has to be 

computed. Best results are obtained when they are both 

closest to 100% with minimum difference between them. 

 

5.  Experimental results 
 

In order to check the validity of our proposed method and 

to compare methods performances studied here, 

experimental studies were carried out on the XM2VTS 

images database [12]. This extended database contains 4 

recordings of 295 subjects taken over a period of 4 months 

with rotating head shot in vertical and horizontal 

directions. Images are colored and in ppm format. In our 

experiments we brought some transformations to original 

images like change to  GIF  format (more compressed) and 

the use of luminance information only (grey scale images) 

to compute the Zernike moments and Eigenfaces vectors. 

To obtain a training database we take randomly 15 

subjects with their first 3 different recordings, so that gives 

45 examples of couples ( , )
i i

Z Ω and ),( ii EZ  to train neural 

networks. To have a precise and rather general idea on 

method performances, we carried out the construction of 

20 training databases always by randomly taking examples 

from the first 3 recordings of the database. For each test, 

we compute the average values of Gdr and Qdr and their 

Standard deviations (Std) σ . Neural networks trained and 

used in our experiments have 60 neurons on their output 

layers so they provide 30 coordinate pairs ( , )ρ θ for 30 

pixels. This number was experimentally chosen to be 

sufficient to surround face region in the treated image. 

Our experiments aimed at the study of behavior of the 

two methods according to the training database, training 

vectors dimension and the neural network complexity. 

 

5.1. General results 
 

First, we present in Figure 4 an example of results given 

by two different trained neural networks applied to the 295 

images of the fourth database recording. The first neural 

network was trained with Zernike moments feature 

vectors. The second was trained with Eigenfaces. 

 

    

     
 

Figure 4: Gdr and Qdr curves for the images of the fourth  

               Database recording. Neural network trained  

               with:(left) Zernike moments, (right) Eigenfaces   

 
These rates are the best ones, according to different 

training databases with feature vector dimension equal to 

22. The resulting rates show that in the case of Zernike 

moments only few faces were incorrectly detected. Most 

of the images were correctly treated indicating good 

generalization performances. However, less performance 

results were recorded in the case of Eigenfaces.  

 
Table 1: Figure's 4 results summary (Ni: images Number) 
 

Zernike Training Eigenfaces Training  

Ni (Ni/295) % Ni (Ni/295) % 

Gdr<70% 11 3.72 23 7.79 

Qdr<70% 60 20.33 74 25.08 

Gdr Mean / Std 93.82   /    9.45 90.16   /   19.10 

Qdr Mean / Std      82.07  /  19.05 79.82   /   24.23  

a b c 



(a) 

(b) 

(c) 

Table 1 shows that in the first case (Zernike moments 

training) 80% of images have Gdr and Qdr greater than 

70%, however only 75% in the case of Eigenfaces. This 

performances superiority is also apparent by comparing 

the Qdr averages and Std computed for all images. 
On Figure 5 we give some examples of good detected 

faces from the testing database. We chose images with 

some faces variability in terms of position, color, pose, 

size and gender. Results illustrate the difference between 

Gdr and Qdr measures and also between performances of 

the two compared methods. 

 

 

 

 
 

Figure 5: Examples of  face detection.(a): original  images 

               (b): faces  detected  with  Zernike training  vectors 

              (c): faces detected with Eigenfaces training vectors 

 
5.2. Training database influence 
 

To study training database influence on each of the 

presented methods and also to obtain more reliable 

performances comparing between them, experiments were 

carried out on the 20 training databases randomly 

constructed.  

 

 
 

Figure 6: Gdr, Qdr  and  Std  variations  related  to  the    

Training feature vectors (Zernike or Eigenfaces)    

and databases (1,2,  …, 20). Top: Gdr and Qdr 

averages, Bottom: Std 

Results given on Figure 6 were obtained by training, 

testing and measuring performances of a neural network 

for each one of the twenty training databases with the 

same fixed parameters. Input, hidden and output layers 

have respectively 6, 10 and 60 neurons with a sigmoid 

activation function for the hidden layer and linear 

activation function for the output layer. “Resilient 

propagation” was used as neural training function.  

According to Gdr, Qdr and Std reported by curves in 

Figure 6, we can say that training with Zernike feature 

vectors gives best results than training using Eigenfaces 

ones. Indeed, for the first case Gdr averages are greater 

than 90% (up to 94%) for almost the totality of the training 

databases and Qdr averages are about 80%. In the same 

way, low Std values show good generalization 

performances on images of the testing database. Results 

obtained for Eigenfaces training show a greater sensitivity 

to the training databases and a bad generalization 

performance (big values of Std) for most of them. Indeed,  

up to 28% of difference in Qdr and up to 40% in Std are 

recorded for neural networks trained with Eigenfaces 

feature vectors, according to the training database. For 

those trained with Zernike moments, this difference is only 

about 6% and Std values are no more than 15%. 
 

5.3. Feature vectors size influence 
 

Feature vectors size has significance related to the quantity 

of image information included and compressed by these 

vectors. Zernike vectors size is controlled by parameters m 

and n while that of Eigenfaces is controlled by the size of 

the projection space constructed. Moreover, vectors size 

determines the number of neurons in the neural network 

input layer and hence, its complexity.  

 

    

               
 

Figure 7: Gdr   and   Qdr   averages   and   Std   variations       

                computed on 20 independent training databases   

                with 7 vectors size: 4, 6, 10, 14, 16, 22 and 24 

 



On Figure 7 we give the variation curves of Gdr and 

Qdr averages and the Std, computed on the totality of the 

results given by the twenty neural networks trained on the 

twenty training databases, according to 7 different size 

values of the feature vectors.  

Here also, we can see that Zernike moments vectors 

provide best average results for the 7 cases studied. 

For the two kinds of training feature vectors, best results 

were obtained for vector sizes between 6 and 10. For other 

vector sizes the quality of localization decreases 

considerably. In the case of sizes lower than 6, this will be 

due to insufficient information brought by vector 

parameters. For those larger than 10, neural networks 

become more complex and thus convergence is more 

difficult. 

 

6.  Conclusion 
 

Face localization using neural networks and a new way to 

train them were presented in this communication. We 

compared results given by neural networks trained with 

Zernike moments feature vectors and those trained with 

Eigenfaces ones, according to a proposed quantitative 

measurement criterion which allows an automatic measure 

and appreciation of results.  

Recorded results of quality detection and capacity of 

generalization demonstrate the superiority performances 

given by the neural networks trained with Zernike 

moments feature vectors. Good localization rates, up to 

94%, were achieved and accurate contours adapted to the 

face shapes were obtained. 

These results demonstrate also the high sensitivity of 

neural networks trained with Eigenfaces to the training 

database. A difference about 28% was recorded for them 

while only 6% of difference for those trained with Zernike 

moments. 

For the two methods, best results were obtained for the 

vectors size 6. Decreasing evolution of Gdr and Qdr 

averages is observed for sizes lower than 6 and greater 

than 10 where, in the same time, the Std values increase 

considerably. This indicates a decrease in the 

generalization capacity of the trained neural networks.  

Method using Zernike moments feature vectors can be 

extended to face components detection and object 

detection in general. Method implementation 

performances can be improved by judicious choices on the 

training database size and contents and also by adapted 

parameters of training vectors and neural network.  
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