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1. Introduction

It is well known that the work of T. Kato [1] on strictly singular operators has been the
starting point of an interesting and complex domain in the operator theory, that is, Fred-
holm and semi-Fredholm perturbations between two Banach spaces X and Y denoted
by �(X ,Y), (�+(X ,Y), �−(X ,Y)), it has been the object of many works studying and
analysing these operators, especially the inclusion between all these classes and the sta-
bility problem by passing to the dual (see [2–10]). The difficulty to study these ques-
tions comes from the fact that their properties are related directly to the geometry of
Banach spaces. The new thing in this paper consists in studying all these classes for closed
densely defined perturbed semi-Fredholm and Fredholm operators which are not neces-
sarily bounded. For X = Y , Latrach and Dehici [11, Lemma 2.3] have shown that �(X)=
�b(X), where �b(X) refers to the class of Fredholm perturbations acting on Φ(X)∩
�(X), it forms the largest closed two-sided ideal in the set of Riesz operators �(X). The
framework of the sets �+(X), �b

+(X), �−(X), and �b−(X) is quite different, we just notice
the trivial inclusions (�+(X) ⊆�b

+(X) and �−(X) ⊆�b−(X)). These comments are also
applicable if X �= Y . Here, by means of Heriditarily indecomposable Banach spaces of
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Gowers-Maurey denoted by XGM , we will show that �(XGM ×XGM ,XGM) � �+(XGM ×
XGM ,XGM) (resp., ��(X∗GM ,X∗GM × X∗GM) � �−(X∗GM ,X∗GM × X∗GM)), moreover, we will
prove that the inclusions �(Z) � �b

+(Z) (resp., ��(Z∗) � �b−(Z∗)) are strict for an in-
finity of Banach spaces Z.

2. Preliminaries and notations

First of all, let us start with recalling some definitions and results about Fredholm theory.
Let X and Y be two Banach spaces, we denote by �(X ,Y) the space of closed densely

defined operators from X into Y , and �(X ,Y) denote the space of bounded linear op-
erators from X into Y . If A ∈ �(X ,Y), N(A) (resp., R(A)) denote the kernel (resp., the
range) of A. Setting

α(A) := dimN(A), β(A) := codimR(A). (2.1)

The set of upper semi-Fredholm operators is defined by

Φ+(X ,Y) := {A∈�(X ,Y) : α(A) <∞(and R(A) is closed in Y
)}

, (2.2)

while the set of lower semi-Fredholm operators is given by

Φ−(X ,Y) := {A∈�(X ,Y) : β(A) <∞(then R(A) is closed in Y
)}
. (2.3)

We denote by Φ(X ,Y) the set Φ+(X ,Y)
⋂
Φ−(X ,Y). If A ∈ Φ(X ,Y), the index of A is

the number i(A) := α(A)− β(A). When X = Y , the sets �(X ,Y), �(X ,Y), Φ+(X ,Y),
Φ−(X ,Y), and Φ(X ,Y) are replaced, respectively, by �(X), �(X), Φ+(X), Φ−(X), and
Φ(X).

Definition 2.1. Let X and Y be two Banach spaces and T ∈�(X ,Y). T is said to be strictly
singular, if its restriction to every closed infinite-dimensional subspace of X is not an
isomorphism.

Let �(X ,Y) denote the set of strictly singular operators from X into Y . In general,
strictly singular operators are not compact (see [12, 4]). If X = Y , �(X) :=�(X ,X) is a
closed two-sided ideal of �(X) containing �(X) and ifX is a separable Hilbert space, then
�(X) :=�(X). For basic properties of strictly singular operators, we refer to [5, 8, 10, 12].

Let N be a closed subspace of a Banach space X . we denote by πN the quotient map
X → X/N . The codimension of N , codim(N), is defined to be the dimension of the vector
space X/N .

Definition 2.2. Let X ,Y be two Banach spaces and T ∈�(X ,Y). T is said to be strictly
cosingular if there exists no closed subspace N of Y with codim(N)=∞ such that πNT :
X → Y/N is surjective.

Let ��(X ,Y) denote the set of strictly cosingular operators on X . This class of opera-
tors was introduced by Pelczynski [13]. The set ��(X ,Y) is a closed subspace of �(X ,Y).
If X = Y , ��(X) :=��(X ,X) forms a closed two-sided ideal of �(X) (see [14]).
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Definition 2.3. Let X and Y be two Banach spaces and let F ∈�(X ,Y). F is called a Fred-
holm perturbation if U +F ∈Φ(X ,Y) whenever U ∈Φ(X ,Y). F is called an upper (resp.,
lower) semi-Fredholm perturbation if U + F ∈ Φ+(X ,Y) (resp., U + F ∈ Φ−(X ,Y))
whenever U ∈Φ+(X ,Y) (resp., U ∈Φ−(X ,Y)).

The sets of Fredholm, upper semi-Fredholm, and lower semi-Fredholm perturbations
are denoted by �(X ,Y), �+(X ,Y), and �−(X ,Y), respectively. If, in Definition 2.3, we
replace Φ(X ,Y), Φ+(X ,Y), and Φ−(X ,Y) by Φb(X ,Y), Φb

+(X ,Y), and Φb−(X ,Y), we ob-
tain the sets �b(X ,Y), �b

+(X ,Y), and �b−(X ,Y). These classes of operators were intro-
duced and investigated in [12]. In particular, it is shown that �b(X ,Y) is a closed subset
of �(X ,Y), and �b(X) :=�b(X ,X) is a closed two-sided ideal of �(X). In general, we
have

�(X ,Y)⊆�(X ,Y)⊆�b
+(X ,Y)⊆�b(X ,Y), (2.4)

�(X ,Y)⊆��(X ,Y)⊆�b
−(X ,Y)⊆�b(X ,Y). (2.5)

The inclusion �(X ,Y)⊆�b
+(X ,Y) is due to Kato [1], whereas the inclusion ��(X ,Y)⊆

�b−(X ,Y) was proved by Vladimirski [14].
Let X be a Banach space and R ∈�(X). R is said to be a Riesz operator if R satisfies

Riesz-Schauder theory of compact operators. The set of all Riesz operators will be de-
noted by �(X). However, we point out that, in general, �(X) is not an ideal of �(X).
Moreover, M. Schechter [7] has proved that �b(X) is the largest closed two-sided ideal of
�(X). By using (2.4) and (2.5), we deduce that the classes �(X),�(X),��(X),�b

+(X) :=
�b

+(X ,X), and �b−(X) :=�b−(X ,X) are included in �(X), therefore, if S belongs to one
of these sets, 0 is an accumulation point of its spectrum (see [15, 7]).

Let X and Y be two Banach spaces and A∈�(X ,Y). For every x ∈D(A) (the domain
of A), we write

‖x‖A := ‖x‖+‖Ax‖ (graph norm). (2.6)

As already observed, D(A) endowed with the norm ‖ · ‖A is a Banach space denoted by
XA, and A, as operator from XA into Y , is bounded. If D(A)⊆D(J), then J is A-defined.
Furthermore, we have

α(Â)= α(A), β(Â)= β(A), R(Â)= R(A), α(Â+ Ĵ )= α(A+ J), (2.7)

β(Â+ Ĵ )= β(A+ J), R(Â+ Ĵ)= R(A+ J). (2.8)

It is clear that the relations (2.7) and (2.8) lead to

A∈Φ+(X ,Y)⇐⇒ Â∈Φ+
(
XA,Y

)
, (2.9)

A∈Φ−(X ,Y)⇐⇒ Â∈Φ−
(
XA,Y

)
, (2.10)

A∈Φ(X ,Y)⇐⇒ Â∈Φ
(
XA,Y

)
. (2.11)
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3. Main results

We start this study by stating the following result which was established in [16].

Proposition 3.1. Let X and Y be two Banach spaces, then

�b(X ,Y)=�(X ,Y). (3.1)

Before completing our analysis, let us give some elements which will be useful after-
wards. First, let us recall the definition of totally incomparable Banach spaces that has
been introduced for the first time by H. Rosenthal [17].

Definition 3.2. Two infinite-dimensional Banach spaces X and Y are called totally incom-
parable if there exists no infinite-dimensional Banach space Z which is isomorphic to a
subspace of X and to a subspace of Y .

It should be observed that every two different spaces from the set {c0}
⋃{lp} are totally

incomparable ([4]). More precisely, we have the following.
Let p ∈ [1,∞[, if p < r (resp. r < p), then

�
(
lr , lp

)=�
(
lr , lp

)=�
(
lr , lp

)=�b
(
lr , lp

)=�
(
lr , lp

)

(resp., �
(
lr , lp

)=�
(
lr , lp

)=�b
(
lr , lp

)=�
(
lr , lp

) �=�
(
lr , lp

))
.

(3.2)

For more examples satisfying the previous identities, we can quote, for example, [18].
On the other hand, it is easy to observe that if X and Y are totally incomparable,

then any bounded operator from X into Y is strictly singular. Moreover, the definition of
Fredholm perturbations allows us to establish the following result.

Lemma 3.3. Let X and Y be two Banach spaces such that �(X ,Y)=�b(X ,Y)=�(X ,Y),
then Φb(X ,Y)=∅.

We give now the definition of hereditarily indecomposable Banach spaces which will
be used afterwards.

Definition 3.4. Let X be a Banach space. X is said to be indecomposable if it can not be
written as a direct sum of two closed infinite-dimensional subspaces.

Definition 3.5. Let X be a Banach space. X is said to be hereditarily indecomposable (H.I)
if all of its closed infinite-dimensional subspaces are indecomposables.

For a detailed study on these spaces, we refer to the famous results established by Gow-
ers and Maurey [19, 20] in which we can find an example of a separable reflexive hered-
itarily indecomposable Banach space denoted by XGM whose dual quotients inherit this
property.

Theorem 3.6 (see [21, Theorem 2.1]). Let X be an XGM Banach space, then
(a)

�
(
XGM ×XGM ,XGM

)=�b
+

(
XGM ×XGM ,XGM

) �=�
(
XGM ×XGM ,XGM

)
, (3.3)
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(b)

�
(
X∗GM ,X∗GM ×X∗GM

)=�b
−
(
X∗GM ,X∗GM ×X∗GM

)

�=��
(
X∗GM ,X∗GM ×X∗GM

)
.

(3.4)

Remark 3.7. As an immediate consequence of this theorem, we deduce that
(a)

�
(
XGM ×XGM ,XGM

)=�b
(
XGM ×XGM ,XGM

) �=�
(
XGM ×XGM ,XGM

)
, (3.5)

(b)

�
(
X∗GM ,X∗GM ×X∗GM

)=�b
(
X∗GM ,X∗GM ×X∗GM

)

�=��
(
X∗GM ,X∗GM ×X∗GM

)
.

(3.6)

We will prove that Theorem 3.6 remains true, respectively, for the perturbation classes
�+(XGM × XGM ,XGM) and �−(X∗GM ,X∗GM × X∗GM); however, the proofs are more
complicated.

The following lemma is essential in proving Theorem 3.10 which is regarded as an ex-
tension of Theorem 3.6 to the closed densely defined (unbounded) semi-Fredholm per-
turbed operators.

Lemma 3.8. Let X be an XGM Banach space, then
(a) Φ+(XGM ×XGM ,XGM) �= ∅ and (b) Φ−(X∗GM ,X∗GM ×X∗GM) �= ∅.

Proof. (a) For the class Φ+(XGM ×XGM ,XGM), the proof is based on the separability of
the space XGM ×XGM (with respect to the topology of its norm) and that of the space
X∗GM endowed with the∗-weak topology. In fact, [3] ensures the existence of a compact
injective operator with a dense range from XGM to XGM ×XGM , this implies that the oper-
ator K−1 : R(K)⊆ XGM ×XGM → XGM is a closed densely defined Fredholm operator and
therefore, Φ(XGM ×XGM ,XGM) �= ∅, one sees that Φ+(XGM ×XGM ,XGM) �= ∅.

(b) A similar approach by duality allows us to establish the result for the class of lower
semi-Fredholm operators Φ−(X∗GM ,X∗GM ×X∗GM). �

The next proposition, owing to Weis [9], will play a fundamental role in the proof of
Theorem 3.10.

Proposition 3.9. Let Y be a Banach space, then
(a) �(Y ,Z)=�(Y ,Z)

⋃
Φ+(Y ,Z) for every Banach space Z if and only if Y is an hered-

itarily indecomposable Banach space,
(b) �(X ,Y) = ��(X ,Y)

⋃
Φ−(X ,Y) for every Banach space X if and only if the quo-

tients of Y are hereditarily indecomposable Banach spaces.

We now prove the following theorem.

Theorem 3.10. Let X be an XGM Banach space, then
(a) �(XGM ×XGM ,XGM)=�+(XGM ×XGM ,XGM) �=�(XGM ×XGM ,XGM),
(b) �(X∗GM ,X∗GM ×X∗GM)=�−(X∗GM ,X∗GM ×X∗GM) �=��(X∗GM ,X∗GM ×X∗GM).
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Proof. (a) It suffices to establish the inclusion �(XGM ×XGM ,XGM) ⊆ �+(XGM ×XGM ,
XGM). �

Let S∈Φ+(XGM ×XGM ,XGM), and let j be the embedding operator from XS to XGM ×
XGM defined by j : (D(S),‖ · ‖S) = XS → XGM ×XGM , j(x) = x, one sees that j is strictly
singular. In fact, since S∈Φ+(XGM ×XGM ,XGM), the relation (2.9) shows that Ŝ∈Φ+(XS,
XGM), this implies the existence of finite codimensional subspace H in XS, which is iso-
morphic to R(Ŝ) = R(S). Furthermore, as R(S) is a closed hereditarily indecomposable
subspace of XGM , then H will inherit this property in the Banach space XS, which al-
lows us to conclude that XS is a hereditarily indecomposable Banach space. Moreover, j /∈
Φ+(XS,XGM ×XGM) because if j ∈Φ+(XS,XGM ×XGM), we would have XS

∼= XGM ×XGM ,
this contradicts the fact that XGM ×XGM is not a hereditarily indecomposable Banach
space. Next, by applying the Proposition 3.9(a), we deduce that j is a strictly singular
operator from XS into XGM .

Let us take now some bounded operator T ∈�(XGM ×XGM ,XGM), we should show
first that the spaces XS+T = (D(S+T),‖ · ‖S+T) and XS = (D(S), ‖ · ‖S) are isomorphic.

Indeed, let x ∈ XS+T = (D(S+T),‖ · ‖S+T), then

‖x‖S+T = ‖x‖+
∥
∥(S+T)x

∥
∥

≤ ‖x‖+
∥
∥S(x)

∥
∥+

∥
∥T(x)

∥
∥

≤ ‖x‖+
∥
∥S(x)

∥
∥+M‖x‖

≤ (1 +M)
(‖x‖+

∥
∥S(x)

∥
∥)

≤ (1 +M)‖x‖S.

(3.7)

Moreover, if x ∈ XS, we can establish the following estimates:

‖x‖S = ‖x‖+
∥
∥S(x)

∥
∥

≤ ‖x‖+
∥
∥(S+T)(x)−T(x)

∥
∥

≤ ‖x‖+
∥
∥(S+T)(x)

∥
∥+

∥
∥T(x)

∥
∥

≤ ‖x‖+
∥
∥(S+T)(x)

∥
∥+M‖x‖

≤ (1 +M)‖x‖S+T ,

(3.8)

and finally,

‖x‖S
(1 +M)

≤ ‖x‖S+T ≤ (1 +M)‖x‖S, (3.9)

this ensures that the spaces XS+T and XS are isomorphic.
This isomorphism will be denoted by h, which is defined by h(x) = x. On the other

hand, the operator T̂ + S defined by T̂ + S : XS+T → XGM , (T + S)(x)= (T jh)(x) + (S jh)(x)
∀x ∈ XS+T is an element of Φ+(XS+T ,XGM), this follows immediately from the fact that
T jh and S jh belong, respectively, to the classes �(XS+T ,XGM) and Φ+(XS+T ,XGM); next,
by the use of the relation (2.9), we obtain T + S ∈Φ+(XGM ×XGM ,XGM) and, therefore,
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T ∈�+(XGM ×XGM ,XGM). Let us now consider the projection operator Pr : XGM×XGM→
XGM defined by Pr(x, y) = x. Obviously, Pr ∈�(XGM ×XGM ,XGM), but this operator is
not strictly singular because its restriction to the subspace X × {0} is an isomorphism;
consequently, �(XGM × XGM ,XGM) = �+(XGM × XGM ,XGM) �= �(XGM × XGM ,
XGM), which achieves the proof.

(b) Let S ∈Φ−(X∗GM ,X∗GM ×X∗GM) and let XS = (D(S),‖.‖S), then the operator j∗ de-
fined from XS to X∗GM by j∗(x)= x is not an element of Φ−(XS,X∗GM) because if we sup-
pose that this is not the case, we obtain XS � X∗GM and, therefore, X∗GM/N(S)� XS/N(S)�
R(S), which is a finite codimensional decomposable subspace of X∗GM ×X∗GM , this contra-
dicts the fact that the quotients of X∗GM are indecomposable Banach spaces. Moreover, the
Proposition 3.9(b) ensures that j∗ is a strictly cosingular operator.

Let us take T ∈ �(X∗GM ,X∗GM ×X∗GM); as in the proof of (a), the operator T̂ + S de-

fined from XS+T to X∗GM ×X∗GM can be written under the form T̂ + S(x) = (T j∗h)(x) +
(S j∗h)(x)∀x ∈ XS+T , which gives that this operator is an element of the set of Φ−(XS+T ,
X∗GM ×X∗GM), this follows immediately from the fact that the operatorsT j∗h and S j∗h be-
long, respectively, to the classes ��(XS+T ,X∗GM ×X∗GM) and Φ−(XS+T ,X∗GM ×X∗GM); next,
by the use of the relation (2.10), we infer that T + S∈Φ−(X∗GM ,X∗GM ×X∗GM) and, there-
fore, T ∈�−(X∗GM ,X∗GM ×X∗GM), this gives that �(X∗GM ,X∗GM ×X∗GM) =�−(X∗GM ,X∗GM ×
X∗GM). Now consider the operator i defined from X∗GM to X∗GM ×X∗GM by i : X∗GM → X∗GM ×
X∗GM , i(x)= (x,0), this operator is not strictly cosingular. In fact, since i∈�(X∗GM ,X∗GM ×
X∗GM), then i ∈ �−(X∗GM ,X∗GM × X∗GM). Let H be the closed subspace H = {(0, y), y ∈
X∗GM} and denote, by πH , the quotient map πH : X∗GM ×X∗GM → (X∗GM ×X∗GM)/H . Clearly,
the operator πHoi : X∗GM → (X∗GM ×X∗GM)/H is surjective. Since codim(H) =∞, we infer
that i is not strictly cosingular from X∗GM to X∗GM ×X∗GM . Consequently, �−(X∗GM ,X∗GM ×
X∗GM) �=��(X∗GM ,X∗GM ×X∗GM), which ends the proof.

Given a complex Banach space X and an operator T ∈�(X), we define

σe(T)= {λ∈ C : λI −T /∈Φb(X)
}

,

σ+(T)= {λ∈ C : λI −T /∈Φb
+(X)

}
,

σ−(T)= {λ∈ C : λI −T /∈Φb
−(X)

}
.

(3.10)

It is well known that σe(T) is a nonempty compact set of the field C because it coincides
with the spectrum of the image of T in the Calkin algebra �(X)/�(X) (see [22]). On the
other hand, it is clear that

σ+(T)
⋃

σ−(T)⊆ σe(T). (3.11)

Moreover, the stability of the index of a semi-Fredholm operator under small perturba-
tions [4, Proposition 2.c.9] provides the inclusions

Fr
(
σe(T)

)⊆ σ+(T),

Fr
(
σe(T)

)⊆ σ−(T),
(3.12)

where Fr(σe(T)) denotes the boundary of the set σe(T).
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The following result shows the fact that the sets σe(T) possess empty interiors in the
field C enables us to derive some nice properties of the classes of semi-Fredholm pertur-
bations. More precisely, we have the following proposition.

Proposition 3.11. Let X be a Banach space such that
0

σe(T)=∅ for every T ∈�(X), then

�b
+(X)=�b

−(X)=�b(X). (3.13)

Proof. In this case, we obtain that Φb(X)=Φb
+(X)=Φb−(X). In fact, let T ∈�(X), from

the inclusions (3.11) and (3.12), we conclude that Fr(σe(T)) = σe(T)\
0

σe(T) = σe(T) =
σ+(T) = σ−(T). To prove (3.13), it suffices to establish the identities Φb(X) = Φb

+(X) =
Φb−(X). We will restrict our proof to the inclusionΦb

+(X)⊆Φb(X) (the inclusionΦb−(X)⊆
Φb(X) may be checked in the same way). This is equivalent to show that C(Φb(X)) ⊆
C(Φb

+(X)), where C(Φb(X)) and C(Φb
+(X)) denote, respectively, the sets �(X)\Φb(X)

and �(X)\Φb
+(X). Let us consider A∈ CΦb(X), then A /∈Φb(X), which implies that 0∈

σe(A) = σ+(A) and, consequently, A /∈ Φb
+(X), this allows us to get A ∈ CΦb

+(X) and it
ends the proof. �

Finally, our last result in this work is stated by the following theorem.

Theorem 3.12. Let Z be an XGM Banach space and let X = XGM × XGM ··· × XGM (n
times, n≥ 2). Denote by Y = X ×Z = XGM ×···×XGM (n+ 1times), then

(a)

�b
+(Y)=�b(Y) �=�(Y), (3.14)

(b)

�b
−(Y∗)=�b(Y∗) �=��(Y∗). (3.15)

Proof. First, we observe that every operator A∈�(Y) can be written under the form

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 . . . A1n

. . . . .

. . . . .

. . . . .

. . . . .
An1. . . . Ann

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B

C D

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.16)

where Aij ∈ �(XGM) ∀i, j = 1, . . . ,n, B ∈ �(XGM ,X) = �b(XGM ,X), C ∈ �(X ,XGM) =
�b(X ,XGM) (because �b(H ,M)=�(H ,M) if and only if �b(M,H)=�(M,H), see [22]),
and D ∈�(XGM).
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Let us denote

A0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 . . . A1n

. . . . .

. . . . .

. . . . .

. . . . .
An1. . . . Ann

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0

0 D

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.17)

We have σe(A) = σe(A0). Since cardσe(Aij) = cardσe(D) = 1, ∀i, j = 1, . . . ,n (see [21,
Proposition 3.1]), we infer that the set σe(A) consists of an isolated point with finite
number in C, thus its interior is empty. Moreover, according to Proposition 3.3, we get
�b(Y) = �b

+(Y). Thus Pj =
(0 JZ

0 0

)
, where jZ : XGM → X , jZ(x) = (x,0, . . . ,0) gives us an

operator in �b(Y)=�b
+(Y), which is not strictly singular.

Second, we show that if H is a reflexive Banach space, we obtain that [�b
+(H)]∗ =

�b−(H∗). Thus Pj
∗ ∈�b−(Y∗). However, Pj

∗ is not strictly singular because jZ
∗ is sur-

jective. �
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