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This paper is devoted to the investigation of the stability of the various essential
spectra of closed densely defined linear operators under perturbations belonging to
any two-sided ideal of the algebra of bounded linear operators contained in the set
of Fredholm perturbations. Our results generalize many known ones in the

Žliterature and, in particular, extend and unify those obtained by K. Latrach 1999,
. ŽJ. Math. Anal. Appl. 233, 607�623 and K. Latrach and A. Jeribi 1998, J. Math.

.Anal. Appl. 225, 461�485 . They are used to describe the essential spectra of
one-dimensional transport equations with anisotropic scattering and abstract
boundary conditions. � 2001 Academic Press

1. INTRODUCTION

Let X be a complex Banach space. By an operator A on X we mean a
Ž . Ž .linear operator with domain D A � X and range R A � X. We denote

Ž . Ž Ž .. Žby CC X resp. LL X the set of all closed, densely defined resp.
. Žbounded linear operators on X. The subset of all compact resp. weakly
. Ž . Ž . Ž Ž ..compact operators of LL X is designated by KK X resp. WW X . For

Ž . Ž . Ž . Ž .A � CC X , we let � A , � A , and N A denote the spectrum, the
Ž .resolvent set, and the null space of A, respectively. The nullity, � A , of

Ž . Ž .A is defined as the dimension N A and the deficiency, � A , of A is
Ž .defined as the codimension of R A in X. The set of upper semi-Fred-

holm operators is defined by

� X � A � CC X : � A � � and R A is closed in X ,� 4Ž . Ž . Ž . Ž .�
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and the set of lower semi-Fredholm operators is defined by

� X � A � CC X : � A � � and R A is closed in X .� 4Ž . Ž . Ž . Ž .Ž .�

Ž . Ž . Ž .Operators in � X � � X � � X are called semi-Fredholm op-� � �
Ž . Ž . Ž .erators on X while � X � � X 	 � X denotes the set of Fred-� �

Ž . Ž . Ž . Ž .holm operators on X. If A � � X , the number i A � � A � � A is
called the index of A. A complex number � is in � , � , � , or ��A �A � A A

Ž . Ž . Ž . Ž .if � � A is in � X , � X , � X , or � X , respectively.� � �

For a self-adjoint operator in a Hilbert space, there seems to be only
one reasonable way of defining the essential spectrum: the set of all points
of the spectrum that are not isolated eigenvalues of finite algebraic

Ž 
 �.multiplicity see, for example, 14, 27, 28 . If X is a Banach space and
Ž .A � CC X , various notions of essential spectrum appear in the applica-

Ž 
 �.tions of spectral theory see, for instance, 10, 12, 15, 18, 31, 37 . Most are
enlargement of the continuous spectrum. They may be ordered as

� A � � A 	 � A � � A � � A � � A ,Ž . Ž . Ž . Ž . Ž . Ž .e3 e1 e2 e4 e5 e6

Ž . Ž . Ž . Ž . Ž .where � A � � � � A with � A � � , � A � � , � A �ei i 1 �A 2 �A 3
Ž . Ž . � Ž . Ž . 4 Ž .� , � A � � , � A � � � � A , i � � A � 0 , and � A de-� A 4 A 5 4 6

Ž . Ž .notes the set of those � � � A such that scalars near � are in � A .5
Ž . Ž .The subsets � 	 and � 	 are the Gustafson and Weidmann essentiale1 e2


 � Ž . 
 � Ž .spectra 12 . � 	 is the Kato essential spectrum 18 . � 	 is the Wolfe3 e4

 � Ž . 
essential spectrum 12, 37 . � 	 is the Schechter essential spectrum 12,e5

� Ž . 
 �31 and � 	 denotes the Browder essential spectrum 12, 15, 25 . Notee6
that all these sets are closed and if X is a Hilbert space and A is
self-adjoint on X, then all these sets coincide.

One of the central questions in the study of essential spectra of closed
densely defined linear operators on Banach spaces consists in showing
when different notions of essential spectrum coincide. Among the works in


 �this direction we can quote, for example, 12, 14, 15, 19, 20, 22, 27, 31, 37
Ž . 
 � Ž 
 �.see also the references therein . Recently, in 22 see also 20 , motivated
by the description of essential spectra of transport operators, the behavior

Ž .of essential spectra of operators in CC X under additive perturbations was
discussed on L spaces. The analysis uses the concept of strictly singularp

Ž 
 �.operators which possess some nice properties on these spaces cf. 24, 34 .

 �In 19 this analysis was extended to operators on Banach spaces which

possess the Dunford�Pettis property. This was accomplished by means of
weakly compact perturbations. It is shown that if X has the Dunford�Pet-
tis property, then the set of weakly compact operators behaves like that of
strictly singular ones on L spaces. In particular, weakly compact opera-p

Ž .tors are power compact and form a closed two-sided ideal, WW X , of
Ž . 
 � ŽLL X . Combining these facts with Proposition 4 in 26 it asserts that if X
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Ž . Ž . Ž .has the Dunford�Pettis property, then WW X � SS X 	 C SS X where
Ž . Ž Ž .. ŽSS X resp. C SS X denotes the ideal of strictly singular resp. strictly

. Ž ..cosingular operators on X cf. Section 2 we show that perturbations by
Ž . Ž . Ž .operators belonging to WW X leave invariant the sets � X , � X ,� �

Ž . Ž .� X , and � X which is a basic step in our approach.�


 �The purpose of this work is to pursue the analysis started in 19, 22 and
Ž .to extend it to general Banach spaces. More precisely, let A � CC X and

Ž . Ž . Ž . Ž .let II X be an arbitrary two-sided ideal of LL X . If II X � FF X ,
Ž . Ž .where FF X denotes the set of Fredholm perturbations, then � A �ei

Ž . Ž . Ž .� A � J for all J � II X and i � 4, 5 and if � A is connected andei e5
Ž . Ž . Ž . Ž .neither � A nor � A � J is empty then � A � � A � J . More-e6 e6
Ž . Ž .over, if II X satisfies some additional reasonable conditions we get

Ž . Ž . Ž . Ž .� A � � A � J for J � II X and i � 1, 2, 3 see Theorem 3.1 . Inei ei
Ž 
 �.general, in applications see, for example, 14, 21, 22, 27, 37 , these results

are not applicable directly, so practical criterions which guarantee the
invariance of the various essential spectra for perturbed linear operators

Ž .are provided Theorems 3.2 and 3.3 . Also, we point out that the definition
of the Schechter essential spectrum may be expressed in terms of opera-

Ž . Ž . Ž . Ž .tors belonging to any subset II X of LL X provided that KK X � II X
Ž . Ž .� FF X . A spectral mapping theorem for � 	 is also derived. Our resultse5

extend and improve many known ones in the literature. In particular, those

 �obtained in 19, 21, 22 are now special cases of those obtained here.

In the last section we will apply the results obtained in Section 3 to
describe the essential spectra of the following integro-differential operator


� 1
A � x , � � �� � � � � x , � � 
 x , � , � � � x , � � d� �Ž . Ž . Ž . Ž . Ž .HH 
 x �1

� T � � K�H


 � 
 �x � �a, a for a parameter 0 � a � � and � � �1, 1 . It describes the
Ž .transport of particles neutron, photons, molecules of gas, etc. in a slab

Ž .with thickness 2 a. The function � x, � represents the number density of
gas particles having the position x and the direction cosine of propagation

Ž� . The variable � may be thought of as the cosine of the angle between
. Ž .the velocity of particles and the x-direction. The functions � 	 and

Ž .
 	, 	 , 	 are nonnegative measurable functions called, respectively, the
collision frequency and the scattering kernel. The boundary conditions are
modeled by

� �� H� �,� D � D

� Ž �. Ž .where D resp. D is the incoming resp. outgoing part of the phase
Ž . � Ž� �space boundary, � resp. � is the restriction of � to D resp.� D � D
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�.D , and H is a bounded linear operator from a suitable function space
on D� to a similar one on D�. There is a wealth of literature treating the

Ž 
transport equation with different boundary conditions see, e.g., 3, 11, 16,
� .21, 22 and the references therein . The known boundary conditions

Žvacuum boundary conditions, specular reflections, periodic, diffuse reflec-
.tions, generalized and mixed type boundary conditions are specific exam-

ples of our general framework. Our analysis is based essentially on
Theorem 3.2 and the knowledge of the essential spectra of T where T0 0
Ž .i.e., H � 0 denotes the streaming operator with vacuum boundary condi-
tions. We give sizable classes of boundary and collision operators for which
the essential spectra of the operators T and A coincide. Our results0 H


 �extend those obtained in 21, 22 to non-homogeneous regular collision
operators.

2. PRELIMINARIES

Ž .DEFINITION 2.1. Let X be a Banach space. An operator S � LL X is
called strictly singular if the restriction of S to any infinite-dimensional

Ž .subspace of X is not an homeomorphism. Let SS X denote the set of
strictly singular operators on X.

For a detailed study of the properties of strictly singular operators we

 � Ž . Ž .refer to 9, 17 . Note that SS X is a closed two-sided ideal of LL X . In

general, strictly singular operators are not compact and the strict singular-
Ž 
 �.ity is not preserved under conjugation see 9, 36 .

Let X be a Banach space. If N is a closed subspace of X, we denote by
Ž .� the quotient map X � X�N. The codimension of N, codim N , isN

defined to be the dimension of the vector space X�N.

Ž .DEFINITION 2.2. Let X be a Banach space and S � LL X . S is said to
be strictly cosingular if there exists no closed subspace N of X with

Ž . Ž .codim N � � such that � S : X � X�N is surjective. Let C SS X de-N
note the set of strictly cosingular operators on X.


 �This class of operators was introduced by Pelczynski 26 . It forms a
Ž . Ž 
 �.closed two-sided ideal of LL X cf. 33 .

Ž .DEFINITION 2.3. Let X be a Banach space and F � LL X . F is called
Ž . Ž .a Fredholm perturbation if U � F � � X whenever U � � X . F is

Ž . Ž .called a upper resp. lower Fredholm perturbation if F � U � � X�
Ž Ž .. Ž . Ž Ž ..resp. � X whenever U � � X resp. � X .� � �

The sets of Fredholm, upper semi-Fredholm, and lower semi-Fredholm
Ž . Ž . Ž .perturbations are denoted by FF X , FF X , and FF X , respectively.� �
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bŽ . b Ž . b Ž . Ž .Remark 2.1. Let � X , � X , and � X denote the sets � X 	� �
Ž . Ž . Ž . Ž . Ž .LL X , � X 	 LL X , and � X 	 LL X , respectively. If in Definition� �

Ž . Ž . Ž . bŽ . b Ž . b Ž .2.3 we replace � X , � X , and � X by � X , � X , and � X� � � �
bŽ . b Ž . b Ž .we obtain the sets FF X , FF X , and FF X . These classes of operators� �


 �were introduced and investigated in 8 . In particular, it is shown that
b Ž . b Ž . bŽ .FF X is closed, and FF X and FF X are closed two-sided ideals of� �
Ž .LL X . In general, we have

KK X � SS X � FF b X � FF b X ,Ž . Ž . Ž . Ž .�

KK X � C SS X � FF b X � FF b X .Ž . Ž . Ž . Ž .�

Ž . b Ž . 
 �The containment SS X � FF X is due to Kato 17 while the inclusion�
Ž . b Ž . 
 �C SS X � FF X was proved by Vladimirskii 33 .�

Ž . � 4An operator R � LL X is said to be a Riesz operator if � � � � 0 .R
Ž .For further information on the family of Riesz operators, RR X , we refer


 �to 2, 15 and the references therein. We recall that Riesz operators satisfy
Ž .the Riesz�Schauder theory of compact operators and RR X is not an ideal

Ž . 
 � 
 � bŽ . Ž .of LL X 2 . In 29 , it is proved that FF X is the largest ideal of LL X
Ž . Ž . Ž .contained in RR X . Hence, the inclusions above imply that KK X , SS X ,

Ž . b Ž . b Ž . Ž .C SS X , FF X , and FF X are contained in RR X .� �
Ž .Let A be a closed linear operator on a Banach space X. For x � DD A

Ž .the domain of A ,the graph norm of x is defined by

� � � � � �x � x � Ax .A

Ž .It follows from the closedness of A that DD A endowed with the norm
� �	 is a Banach space. In this new space, denoted by X , the operator AA A

� � � � Žsatisfies Ax 
 x and, consequently, is a bounded operator actingA
.from X into X .A

Ž . Ž .Let J be a linear operator on X. If DD A � DD J , then J will be called
ˆA-defined. If J is an A-defined operator, we will denote by J the

ˆŽ . Ž .restriction of J to DD A . Moreover, if J � LL X , X , we say that J isA
Ž . Ž 
A-bounded. One checks easily that if J is closed or closable cf. 18,

�.Remark 1.5, p. 191 , then J is A-bounded.

Ž .Remark 2.2. Let X be a Banach space and let A � CC X . As men-
Ž .tioned above, DD A provided with the graph norm is a Banach space

denoted by X . Let J be an arbitrary A-bounded operator. Hence we canA
ˆregard A and J as operators from X into X. They will be denoted by AA

ˆ Ž .and J, respectively. These belong to LL X , X . Furthermore, we have theA
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obvious relations

� ˆ ˆ ˆ� A � � A , � A � � A , R A � R A ,Ž . Ž . Ž .Ž . Ž . Ž .
� ˆ ˆ 2.1� A � J � � A � J , Ž .Ž .Ž .� ˆ ˆ ˆ ˆ� A � J � � A � J and R A � J � R A � J .Ž . Ž .Ž . Ž .

We will continue this section by giving some lemmas which describe
Ž . Ž . Ž .some properties of the sets FF X , FF X , and FF X we will need in the� �

sequel.

Ž .LEMMA 2.1. Let A � CC X . Then the following statements hold.

Ž . Ž . Ž . Ž .i A � � X if and only if � A � K � � for all K � KK X .�

Ž . Ž . Ž . Ž .ii A � � X if and only if � A � K � � for all K � KK X .�

Ž 
This lemma is known for bounded semi-Fredholm operators see 23,
�. Ž . Ž Ž ..29 . The proof of the statement i resp. ii is a straightforward adapta-


 � Ž 
 �.tion of the proof of Theorem 23 in 29 resp. Theorem 5.4 in 23 . So they
are omitted.

Ž .LEMMA 2.2. Let F � LL X . Then the following statements hold.

Ž . Ž . Ž . Ž .i F � FF X if and only if � A � F � � for each A � � X .� �

Ž . Ž . Ž . Ž .ii F � FF X if and only if � A � F � � for each A � � X .� �

Ž . Ž . Ž . Ž .iii F � FF X if and only if either � A � F � � or � A � F � �
Ž .for each A � � X .

Ž . Ž . Ž .Proof. i Let F � FF X and let A � � X . Then A � F �� �
Ž . Ž .� X and consequently � A � F � �. Conversely, assume that F ��
Ž . Ž . Ž .FF X . Then there exists A � � X such that A � F � � X . There-� � �

ˆ ˆ b Ž . 
 �fore, by Remark 2.3, A � F � � X , X . Next, applying 23, Lemma 4.3� A
ˆ Ž . Žwe infer that there exists an operator K such that K � KK X , X i.e., KA

ˆ ˆ ˆ. Ž . Ž . Žis A-compact and � A � F � K � �, i.e., � A � F � K � � use Eq.
Ž .. 
 �2.1 . On the other hand, the use of 30, Theorem 6.2, p. 183 shows that

Ž . Ž .A � K � � X , and therefore � A � F � K � �. This contradicts the�
Ž . Ž .fact that � A � F � K � � and ends the proof of i .

Ž .ii This may be checked in the same way as above; it suffices to

 � 
 �replace 23, Lemma 4.3 by 23, Lemma 5.1 .

Ž . Ž . Ž . Ž .iii Let F � FF X . Hence, for each A � � X , � A � F � �
Ž . Ž .and � A � F � �. Conversely, suppose that � A � F � � for each
Ž .A � � X . Let � be an arbitrary nonzero complex number and let A be

A � KŽ .Ž . 
 � Ž .an element of � X . Then, by 30, Theorem 2.1, p. 167 , � � X
�
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Ž . Ž .for each K � KK X . Hence � A � �F � K is finite for all scalar �.
Ž . Ž .Thus, by Lemma 3.1 i , we see that A � �F � � X . Now arguing as in�


 � Ž 
 �.the proof of 9, Theorem 2.1, p. 117 or 18, Theorem 5.22, p. 236 and

 � Ž . Ž .using the compactness of the interval 0, 1 we obtain � A � F 
 � A .

Ž . Ž . Ž .Since � A � �, we get � A � F � �. Consequently, A � F � � X .
Ž .This shows that F � FF X .

Ž . Ž . 
If � A � F � � for all A � � X , a similar proof as above using 9,
� Ž 
 �. Ž .Theorem 2.1, p. 117 or 18, Theorem 5.22, p. 236 shows that � A � F
Ž . Ž .� � for all A � � X which implies that F � FF X . Q.E.D.

LEMMA 2.3. Let X be a Banach space. Then

Ž . Ž . Ž . Ž .i FF X and FF X are closed in LL X ,� �

Ž . Ž . bŽ .ii FF X � FF X .

Remark 2.3. In contrast to the result of the second item, whether or
Ž . Ž Ž .. b Ž . Ž b Ž ..not FF X resp. FF X is equal to FF X resp. FF X seems to be� � � �

unknown.

Ž . Ž .Remark 2.4. As a consequence of Lemma 2.3 ii , FF X is a closed
Ž . 
 �two-sided ideal of LL X . In fact, by 29 , it is the largest closed two-sided
Ž . 
ideal contained in RR X . On the other hand, Lemma 2.2 and 9, Theorem

� Ž . Ž . Ž . Ž . Ž .2.1, p. 117 imply that KK X � SS X � FF X � FF X and KK X ��
Ž . Ž .FF X � FF X .�

Ž . Ž .As a consequence of Lemma 2.3 ii is that FF X is a closed two-sided
Ž . 
ideal of LL X . On the other hand, Lemma 2.2 and 9, Theorem 2.1, p.

� Ž . Ž . Ž . Ž . Ž . Ž .117 imply that KK X � SS X � FF X � FF X and KK X � FF X �� �
Ž .FF X .

Ž . Ž .Proof of Lemma 2.3. i Let F be a sequence of operators ofn
Ž . Ž Ž .. Ž . Ž .FF X resp. FF X such that F converges to F in LL X . If A �� � n
Ž . Ž Ž .. 
� X resp. � X , then for n large enough, applying 9, Theorem 1.6,� �

� Ž . Ž . Ž Ž ..p. 112 we get A � F � F � � X resp. � X . Next, using the factn � �
Ž . Ž Ž ..that F � FF X resp. FF X , together with the relation A � F � A �n � �

Ž . Ž . Ž Ž ..F � F � F we conclude that F � FF X resp. FF X .n n � �

Ž . Ž . bŽ . Ž bŽ . Ž ..ii Clearly, FF X � FF X because � X � � X . To prove the
bŽ . Ž . 
opposite inclusion, let F � FF X . If A � � X , then by 30, Theorem

� Ž . Ž .1.1, p. 162 there exist A � LL X and K � FF X such that0 0

AA � I � K on X , 2.2Ž .0

Ž .where FF X stands for the ideal of finite rank operators. Thus0

A � F A � I � K � FA � I � �. 2.3Ž . Ž .0 0

ˆ bŽ . Ž . ŽClearly, the fact that A � � X implies that A � � X , X use Re-A
. Ž .mark 2.3 . Also, 2.2 implies that AA is a Fredholm operator. Next,0
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 � bŽ .applying 30, Theorem 2.7, p. 171 we obtain that A � � X, X . Simi-0 A
bŽ . Ž . Ž .larly, since FF X is a closed two-sided ideal of LL X containing FF X ,0

bŽ . Ž . Žwe conclude that � � FF X . This together with 2.3 implies that A �
. bŽ . bŽ . 
F A � � X . Since A � � X, X , it follows from 30, Theorem 2.5,0 0 A

ˆ ˆ b� Ž . 
 � Ž Ž ..p. 169 that A � F � � X , X . Now by 30, Lemma 1.7, p. 166 or 2.1A
Ž . Ž .we see that A � F � � X . This shows that F � FF X which ends the

proof. Q.E.D.

We now recall another definition of the Schechter essential spectrum
Ž 
 �.which may be also encountered in the literature see, for example, 30 .

Ž .Indeed, let A � CC X ,

� A � � A � K . 2.4Ž . Ž . Ž .�e5
Ž .K�KK X

The next proposition, owing to Schechter, shows the equivalence between
Ž . Ž .2.4 and the definition of � 	 given above.e5


 �PROPOSITION 2.1 30, Theorem 5.4, p. 180 . Let X be a Banach space
Ž .and let A � CC X . Then

� � � A if and only if � � �0 ,Ž .e5 A

0 � Ž . Ž . 4where � � � � � A ; i � � A � 0 .A

We close this section by recalling the following definitions required
below.

Let X be a Banach space. We say that X possesses the Dunford�Pettis
Ž .property for short, property D P if for each Banach space Y every weakly

compact operator T : X � Y takes weakly compact sets in X into norm
compact sets of Y. It is well known that any L -space has the property D1

Ž .P. Also, if � is a compact Hausdorff space then C � has the property D

 �P. For further examples we refer to 5, 6, pp. 494, 497, 508, and 511 .

Ž .We say that X is weakly compactly generating w.c.g if the linear span
of some weakly compact subset is dense in X. For the properties of w.c.g


 �spaces we refer to 4 . In particular, all separable and all reflexive Banach
Ž . Ž .spaces are w.c.g as well as L �, d� if �, � is �-finite.1

We say that X is subprojective, if given any closed infinite dimensional
subspace M of X, there exists a closed infinite dimensional subspace N
contained in M and a continuous projection from X onto N. Clearly any

Ž .Hilbert space is subprojective. The spaces c , l 1 
 p � � , and L0 p p
Ž . Ž 
 �.2 
 p � � are also subprojective cf. 36 .

We say that X is superprojective if every subspace V having infinite
codimension in X is contained in a closed subspace W having infinite
codimension in X and such that there is a bounded projection from X to
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Ž . Ž .W. The spaces l 1 � p � � and L 1 � p 
 2 are superprojectivep p
Ž 
 �.cf. 36 .

3. MAIN RESULTS

Let X be a fixed Banach space. Unless otherwise stated in all that
Ž . Ž .follows II X will denote an arbitrary nonzero two-sided ideal of LL X

satisfying the condition

H II X � FF X .Ž . Ž . Ž .

Ž .Remark 3.1. It should be observed that if II X is a nonzero two-sided
Ž .ideal satisfying H , then

FF X � II X � FF X . 3.1Ž . Ž . Ž . Ž .0

Ž . 
 �This follows from Lemma 2.3 ii and 8, Proposition 4, p. 70 .

We begin with the following proposition which is fundamental for our
purpose. It generalizes many known perturbation results in the literature.

Ž . Ž .PROPOSITION 3.1. Let A � CC X and let II X be any nonzero ideal of
Ž . Ž . Ž .LL X satisfying H . If J � II X , then

Ž . Ž . Ž . Ž . Ž .i if A � � X , then A � J � � X and i A � J � i A .

Moreo�er,
Ž . Ž . Ž . Ž . Ž .ii if A � � X and II X � FF X , then A � J � � X ;� � �

Ž . Ž . Ž . 
 Ž .� Ž . Ž .iii if II X � FF X or II X * � FF X* , then A � J � � X� � �
Ž .for all A � � X ;�

Ž . Ž . Ž . Ž . Ž .iv if A � � X and II X � FF X � FF X , then A � J �� � �
Ž .� X .�

Ž . Ž . Ž .Proof. Note that the statement ii , the first part of iii and iv are
Ž . Ž .trivial. The second part of iii may be checked as follows. Let J � � X .�

Ž . 
 Ž .� Ž .Clearly, A* � � X* . Moreover, the inclusion II X * � FF X* shows� �
Ž . Žthat A* � J* � � X* . Next, this together with the fact that � A* ��

. Ž . Ž 
 �. Ž .J* � � A � J cf. 9, 18 , implies that A � J � � X .�

Ž . Ž . Ž . Ž .i Let A � � X and J � II X . The fact that A � J � � X
follows from Definition 2.3. Next, proceeding as in the proof of Lemma

Ž . Ž . Ž . Ž .2.3 ii we see that there exist A � LL X and K � FF X such that 2.30 0
holds. This leads to

A � J A � I � K � JA � I � �. 3.2Ž . Ž .0 0
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Ž . Ž .Since II X is a closed two-sided ideal containing FF X , we have � �0
Ž . Ž . Ž . Ž . Ž .II X � FF X . Then 2.4 and 3.2 imply that AA and A � J A are in0 0
bŽ .� X and

i AA � i A � R A � 0. 3.3Ž . Ž . Ž .Ž .0 0

Ž .On the other hand, arguing as in Lemma 2.3 ii we see that A �0
b ˆ ˆ bŽ . Ž .� X, X and A � J � � X , X . Next, applying the Atkinson theoremA A


 � Ž . Ž .30, Theorem 1.3, p. 163 to both AA and A � J A and using 3.3 we0 0
get

ˆ ˆ ˆi A � �i A and i A � J � �i AŽ . Ž .Ž . Ž .0 0

ˆ ˆ ˆŽ . Ž . Ž .which implies that i A � i A � J . Now, by 2.1 , we have A � J in
Ž . Ž . Ž .� X and i A � i A � J . This concludes the proof. Q.E.D.

Our first result is the following theorem.

Ž . Ž .THEOREM 3.1. Let A � CC X and let II X be any nonzero two-sided
Ž . Ž .ideal of LL X . Assume that the condition H is satisfied, then

Ž . Ž .i if J � II X , then

� A � � A � J , i � 4, 5.Ž . Ž .ei ei

Ž . Ž Ž ..Moreo�er, if C� A the complement of � A is connected and neithere5 e5
Ž . Ž .� A nor � A � J is empty, then

� A � � A � J .Ž . Ž .e6 e6

Further,
Ž . Ž . Ž .ii if II X � FF X , then�

� A � � A � J �J � II X ;Ž . Ž . Ž .e1 e1

Ž . Ž . Ž . 
 Ž .� Ž .iii if II X � FF X or II X * � FF X* , then� �

� A � � A � J �J � II X ;Ž . Ž . Ž .e2 e2

Ž . Ž . Ž . Ž .iv if II X � FF X � FF X , then� �

� A � � A � J �J � II X .Ž . Ž . Ž .e3 e3

Ž . Ž .Remark 3.2. a The ideal of finite rank operators FF X is the0
Ž . Ž . Ž . Ž . Ž .minimal subset of LL X for which the assertions i , ii , iii , and iv are

valid regardless of the Banach spaces.
Ž . 
b Theorem 3.1 may be regarded as an extension of 19, Theorem

� Ž .3.1; 22, Theorem 3.1 to general Banach spaces. In fact, let �, �, � be a
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Ž . Ž . Ž .measure space; if X � L � , 1 
 p 
 �, and A � CC X , then � A �p ei
Ž . Ž . 
 �� A � S for all S � SS X and i � 1, 4, 5, and 6 22 . The same holdsei

Ž .true for X � l , 1 
 p � � or C � , provided that � is a compactp
Hausdorff space. Also, using weakly compact perturbations, similar results


 � Ž .were obtained in 19 for � 	 with i � 2, 4, 5, and 6 on Banach spacesei
which possess the Dunford�Pettis property.

Ž . Ž . Ž .Proof of Theorem 3.1. The proofs of the statements ii , iii , iv , and
Ž .the first part of i for i � 4 use Proposition 3.1 and are immediate. So,

they are omitted.
Ž . Ž .Next, we prove i for i � 5. If � � � A , then by Proposition 2.1,e5

0 Ž . 0� � � . Hence, using Proposition 3.1 i one has � � � . Applying againA A�J
Ž . Ž . Ž .Proposition 2.1 we see that � � � A � J , i.e., � A � J � � A .e5 e5 e5

Ž .Analogously, using Propositions 2.1 and 3.1 i and arguing as above we
Ž . Ž .derive easily the opposite inclusion � A � � A � J .e5 e5

Ž .The proof of the statement i for i � 6 is essentially the same as that of

 �the last assertion of Theorem 3.1 in 19 . Q.E.D.

Note that if A and B are bounded self-adjoint operators in a Hilbert
Ž 
 �.space, the classical theorem of Weyl see 14, 27, 28 states that if A � B

Ž . Ž . Žis compact then � A � � B . Here, as mentioned in the Introduc-ess ess
tion, all essential spectra coincide with the set of limit points of the

Ž . . Žspectrum denoted � 	 . Known generalizations of this result see, foress

 �.example, 27 replace the compactness requirement of A � B by the

Ž .�1 Ž .�1 Ž . Ž .condition that � � A � � � B is compact for � � � A � � B
and relax to various degrees the self-adjointness restriction on A and B. A


 �generalization to closed densely defined linear operators was given in 31
Ž . Ž . 
 �for � 	 with i � 4, 5. For � 	 we refer to 18, Problem 5.38, p. 244 . Theei e3

result below goes beyond these. We prove that the compactness of the
Ž .�1 Ž .�1operator � � A � � � B is not necessary and it suffices that it

Ž . Ž .belongs to any ideal of LL X satisfying the condition H .

Ž . Ž .THEOREM 3.2. Let A, B � CC X and let II X be a nonzero two-sided
Ž . Ž . Ž . Ž .�1 Žideal satisfying H . If , for some � � � A � � B , � � A � � �

.�1 Ž .B � II X , then

Ž . Ž . Ž .i � A � � B , i � 4, 5.ei ei
Moreo�er,

Ž . Ž . Ž .ii if II X � FF X , then�

� A � � B ;Ž . Ž .e1 e1

Ž . Ž . Ž . 
 Ž .� Ž .iii if II X � FF X or II X * � FF X* , then� �

� A � � B ;Ž . Ž .e2 e2
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Ž . Ž . Ž . Ž .iv if II X � FF X � FF X , then� �

� A � � B .Ž . Ž .e3 e3

Ž .Remark 3.3. a Earlier versions of Theorem 3.2 in the special cases
Ž .where X has the Dunford�Pettis property or X is an L space 1 
 p 
 �p


 �were established in 19, 22 . For self-adjoint operators on Hilbert spaces

 �Theorem 3.2 is due to Wolf 37 .

Ž . Žb Note that in applications transport operators, Schrodinger oper-¨
Ž 
 �..ators, operators arising in dynamic populations, etc. see 3, 11, 27 , the

Ž .operator B is, in general, a bounded perturbation of A where A � CC X
is the infinitesimal generator of a strongly continuous semigroup. Putting

Ž . �Ž .�1 �J � B � A � LL X and taking into account that lim � � ARe ���

Ž 0 .� 0 because A generates a C -semigroup , one sees that there exists
Ž . ŽŽ .�1 . Ž .� � � A such that r � � A J � 1. Consequently, � � � B and�

n�1 �1 �1 �1
� � B � � � A � � � A J � � A .Ž . Ž . Ž . Ž .Ý

n�1

Ž .�1 Ž . Ž .Obviously, if � � A J � II X and the ideal II X is closed, then
Ž .�1 Ž .�1 Ž .� � B � � � A � II X . Therefore, Theorem 3.2 applies to the
operators A and B.

Proof of Theorem 3.2. Without loss of generality, we may suppose that
Ž .� � 0. Hence 0 � � A and therefore

� � A � �� ��1 � A�1 A , � � 0.Ž .
Ž . Ž �1 �1.Since A is one to one and onto, then � � � A � � � � A and

Ž . Ž �1 �1. Ž .R � � A � R � � A . This shows that � � � resp. � if and�A �A
�1 Ž .�1 �1only if � � � resp. � . Similarly, we have � � � if and only�A �A A

if ��1 � � �1 .A
�1 �1 Ž . Ž .Assume that A � B � II X . Hence using Proposition 3.1 i we

conclude that

� � � and i � � A � i � � B for each � � � .Ž . Ž .A B A

Ž .This proves i .
Ž . Ž . Ž Ž . Ž . 
 Ž .� Ž ..If further II X � FF X resp. II X � FF X or II X * � FF X*� � �

Ž . Ž Ž ..then Proposition 3.1 ii resp. Proposition 3.1 iii implies that � � � ,�A �B
Ž . Ž . Ž Ž ..resp. � � � . This concludes the proof of iii resp. iv .�A �B

Ž . Ž . Ž . Ž .To establish iv , it suffices to observe that if II X � FF X � FF X ,� �
Ž .then by Proposition 3.1 iv we have

� � � � � � � .�A �A �B �B

This ends the proof. Q.E.D.
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We have also the following useful stability result for the Wolf and the
Schechter essential spectra.

Ž . Ž .THEOREM 3.3. Let A, B � CC X and let II X be a nonzero two-sided
Ž . Ž .ideal satisfying H . Assume that there are A , B in LL X and J , J in0 0 1 2

Ž .II X such that

AA � I � J , 3.4Ž .0 1

BB � I � J . 3.5Ž .0 2

Ž .If 0 � � �� and A � B is in II X , thenA B 0 0

� A � � B . 3.6Ž . Ž . Ž .e4 e4

Ž . Ž .If , further, i A � i B � 0, then

� A � � B . 3.7Ž . Ž . Ž .e5 e5


Remark 3.4. Theorem 3.3 generalizes 19, Theorem 3.4; 22, Theorem
�3.4 to the general Banach spaces context.

Ž . Ž .Proof of Theorem 3.4. By 3.4 and 3.5 , for any scalar �, we have

� � A A � � � B B � J � J � � A � B . 3.8Ž . Ž . Ž . Ž .0 0 1 2 0 0

Ž . Ž .If � � � B , then � � � . Since B is closed, DD B endowed with thee4 B
Ž . 
graph norm is a Banach space denoted by X , see Section 2 . Using 30,B

ˆ b� Ž .Corollary 1.6, p. 166 we obtain � � B � � X , X . Moreover, sinceB
Ž . Ž . Ž . 
 �J � II X , Eq. 3.5 , Proposition 3.1 i , and 30, Theorem 2.7, p. 171 imply2

b ˆ bŽ . Ž . Ž . Ž .that B � � X, X . Thus, � � B B � � X . If A � B � II X ,0 B 0 0 0
ˆ bŽ . Ž . Ž . Ž .then Eq. 3.8 together with Proposition 3.1 i gives � � A A � � X0

and

ˆ ˆi � � A A � i � � B B . 3.9Ž .Ž . Ž .0 0

Ž . Ž .On the other hand, since A � CC X , using 3.4 and arguing as above we
Ž . Ž . Ž .conclude that A � � X, X . Thus, since � � A A � � X , the use of0 A 0

ˆ b
 � Ž .30, Theorem 2.5, p. 169 shows that � � A � � X , X and conse-A
Ž . Ž 
 �. Ž .quently � � A � � X use 30, Corollary 1.6, p. 166 . Hence � � � A ,e4

Ž . Ž .i.e., � A � � B . The opposite inclusion follows by symmetry and thee4 e4
Ž .proof of 3.6 is complete.

Ž . Ž .We now prove 3.7 . If � � � A , then Proposition 2.1 implies thate5
0 Ž . Ž . Ž .� � � . Next, since J and J belong to II X and i A � i B � 0,A 1 2

Ž . Ž . Ž .applying Proposition 3.1 i to 3.4 and 3.5 and using the Atkinson
Ž . Ž . Ž .theorem we get i A � i B � 0. This together with 3.9 , the Atkinson0 0

Ž .theorem, and 2.1 gives

i � � A � i � � B .Ž . Ž .
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0 0 Ž . Ž .Since � � � , we get � � � . This proves � B � � A . The oppositeA B e5 e5
inclusion follows by symmetry. Q.E.D.

Ž .In the following theorem we prove a sharper form of 2.4 . To do so, we
Ž .will assume that II X satisfies

KK X � II X � FF X . 3.10Ž . Ž . Ž . Ž .
Ž . Ž .THEOREM 3.4. Let A � CC X and let II X be any nonzero two-sided

Ž . Ž .ideal of LL X . If 3.10 is fulfilled, then

� A � � A � J .Ž . Ž .�e5
Ž .J�II X

Ž . Ž . Ž . ŽRemark 3.5. a Note that any subset II X of LL X not necessarily
. Ž .an ideal satisfying 3.10 may characterize the Schechter essential spec-
Ž . Ž . Žtrum. KK X is then the minimal subset of LL X in the sense of the
.inclusion for which Theorem 3.4 holds true. Hence Theorem 3.4 provides

Ž .an improvement of the definition of � 	 valid for a somewhat largee5
Ž . 
variety of subsets of LL X . Also, it may be viewed as an extension of 19,

�Theorem 3.2; 22, Theorem 3.2 to general Banach spaces.
Ž .b A result in the spirit of Theorem 3.4 for the Browder essential


 � Ž .spectrum was established in 15 . It is proved that � A is invariant under6
perturbations of A by Riesz operators which commute with A.

Ž .Proof of Theorem 3.4. Set OO � � � A � J . We already knowJ � II Ž X .
Ž . Ž . Ž . Ž .from 2.4 and 3.10 that OO � � A . It remains to show that � A � OO.e5 e5

Ž . Ž .If � � OO, then there exists J � II X such that � � � A � J . Hence,
0 Ž .�1 Ž . Ž� � � . On the other hand, since � � A � J � LL X , then � �Ž A�J .
.�1 Ž . Ž . ŽA � J J � II X . Therefore, by Proposition 3.1 i , one has I � � � A

.�1 Ž . Ž Ž .�1 .� J J � � X and i I � � � A � J J � 0. Next, using the relation
Ž .Ž Ž .�1 .� � A � � � A � J I � � � A � J J together with Atkinson’s the-


 � 0orem 30, Theorem 1.3, p. 163 we get � � � . Now, applying PropositionA
Ž . Ž .2.1 we see that � � � A , i.e., � A � OO. This completes the proof.e5 e5

Q.E.D.

Ž . Ž .PROPOSITION 3.2. Let A � CC X and let II X be a nonzero two-sided
Ž . Ž . Ž . Ž .ideal satisfying H . If � A � � A , then, for each J � II X , there is ate6 e5

most a countable set UU of complex numbers such that

� A � � J � � AŽ . Ž .e6 e6

Ž .for � � UU. If C� A consists of a finite number of components, then UU ise6
discrete.

Ž .Proof. Let � be a complex number. Since � J � II X , applying Theo-
Ž . Ž . Ž .rem 3.1 we get � A � � J � � A � � A . Let � be an arbitrarye5 e5 e6
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Ž . Ž .component of C� A � � A and let � be any point of �. By defini-e6 6 0
Ž . Ž .tion of � 	 see Section 2 , there is a neighborhood of � , VV , such that6 0 �0

� 4 Ž . � 4 Ž . Ž .VV � � � � A . Let � � VV � � � � A . Then, by Proposition 3.1 i ,� 0 1 � 00 0

for all � the operator � � A � � J is a Fredholm operator with index1
Ž .equal to zero. Now, applying Proposition 3.1 i we conclude that, for � not

in a discrete set UU,

� � � A � � J � � � � A � � J � 0,Ž . Ž .1 1

Ž .i.e., � � � A � � J . Since � � � , it cannot contain any point of the1 A�� J
Ž . Ž .set � A � � J . Since C� A consists of at most a countable number ofe6 e6

components, the proof is complete. Q.E.D.

The next result provides a spectral mapping theorem for the Schechter
Ž 
 �.essential spectrum in a special case which occurs in applications cf. 22 .
Ž . Ž .Let us recall that the spectral mapping theorem holds true for � 	 , � 	 ,e1 e2

Ž . Ž . Ž 
 �. 
� 	 , and � 	 cf. 10, 25 . However, a counter-example given in 10, p.e4 e6
� Ž . Ž .23 shows that, in general, it is false for � 	 and � 	 .e3 e5

Ž . Ž .PROPOSITION 3.3. Let II X be a nonzero two-sided ideal satisfying H
Ž . Ž .and let A and A be two elements of CC X such that A � A � II X . If1 2 1 2

Ž . Ž .� A � � A and f is a complex-�alued function locally holomorphic one4 1 e5 1
Ž . Ž . � 4� A � � A � � then1 2

f � A � � f A , k � 1, 2.Ž . Ž .Ž . Ž .e5 k e5 k


 � Ž .In 22, Theorem 3.5 this proposition was proved for the case X � L d�p
Ž . Ž Ž ..and II X � SS L d� .p

Proof of Proposition 3.3. For k � 1 the result follows from the hypothe-
Ž . Ž . 
 Ž .�sis � A � � A and 10, Theorem 7 a . Consider now the casee5 1 e4 1

Ž Ž .. Ž Ž .. 
k � 2. The inclusion � f A � f � A follows from 10, Theoreme5 2 e5 2
Ž .� Ž Ž .. Ž Ž .. Ž Ž ..7 b . It remains to show f � A � � f A . Let � � f � A .e5 2 e5 2 e5 2

Ž . Ž .Then there exists � � � A such that � � f � . Hence using thee5 2
Ž . Ž .hypothesis � A � � A and Theorem 3.1, for i � 4, one sees thate4 1 e5 1

Ž .� � � A . Next, applying the spectral mapping theorem for the Wolfe4 2

 Ž .� Ž . Ž Ž ..essential spectrum 10, Theorem 7 a we obtain f � � � f A . Sincee4 2

Ž Ž .. Ž Ž .. Ž . Ž Ž ..� f A � � f A , we infer that f � � � f A which com-e4 2 e5 2 e5 2
pletes the proof. Q.E.D.

Ž .Remark 3.6. If instead of assuming that A � A � II X we suppose1 2
that A and A satisfy the hypotheses of Theorem 3.2 or 3.3, the result of1 2
Proposition 3.3 remains valid.

Ž . Ž .Concluding Remarks. 1 As observed in Remark 3.1, if II X satisfies
Ž . Ž . Ž .the hypothesis H , then FF X � II X . Hence the ideal of finite rank0
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Ž . Ž .operators is the minimal subset of LL X in the sense of the inclusion for
Ž .which the results of this paper except Theorem 3.2 are valid.

Ž . Ž .2 Let A � CC X and assume that X has the property D P. It is

 � Ž .proved in 19, Sect. 3 that the ideal of weakly compact operators, WW X ,

Ž . Ž . Ž . Ž .leaves invariant the sets � X , � X , � X , and � X under� � �

Ž . Ž . Ž . Ž .additive perturbations, i.e., WW X � FF X 	 FF X . Hence, for II X� �
Ž .� WW X , the assertions of Proposition 3.1 are valid and, consequently, the

results obtained above hold true. Note that the tools used to prove these
results depend essentially on the structure and the properties of the spaces
considered and are somewhat different from those used in this paper.

Ž . 
 �3 In 35 Weis proved that if X is a w.c.g Banach space, then

FF X � SS X and FF X � C SS X . 3.11Ž . Ž . Ž . Ž . Ž .� �

Ž . Ž . Ž Ž . Ž ..Clearly if II X � SS X resp. II X � C SS X , then only the assertions
Ž . Ž . Ž Ž . Ž ..i and iv resp. ii and iv of Proposition 3.1 are valid. Accordingly,
solely partial results of those obtained in Section 3 hold true.

PROPOSITION 3.4. If X is a w.c. g Banach space, then

Ž . Ž . Ž . Ž .i if X is superprojecti�e, then SS X � FF X 	 FF X ;� �

Ž . Ž . Ž . Ž .ii if X is subprojecti�e, then C SS X � FF X 	 FF X .� �


 Ž .�Proof. If X is superprojective, then, by 32, Theorem 6 i , one sees
Ž . Ž . Ž .that SS X � C SS X . Now the first result follows from Eq. 3.11 . If X is


 �subprojective, then the use of the second assertion of Theorem 6 in 32
Ž . Ž . Ž .gives C SS X � SS X . This together with Eq. 3.11 completes the proof.

Q.E.D.

ŽProposition 3.4 shows that if X is w.c.g and superprojective resp.
. Ž . Ž . Ž Ž . Ž ..subprojective then, for II X � SS X resp. II X � C SS X , the state-

ments of Proposition 3.1 hold true and therefore all results of this section
are valid.

Ž . Ž .4 Let �, �, � be a positive measure space and let X denote thep
Ž . 
 .spaces L �, d� with 1 
 p � �. Since p � 1, � , the spaces X arep p

Ž . Ž . Ž . Ž .w.c.g and consequently we have FF X � SS X and FF X � C SS X .� p p � p p
Ž .Actually, for these spaces, we have a stronger result, namely that SS Xp

Ž . Ž . Ž 
 �.and C SS X are both equal to FF X see 24; 34; 35, p. 430 . A detailedp p
treatment of essential spectra of closed densely defined operators on
L -spaces using the ideal of strictly singular operators and related resultsp


 � Ž 
 � .may be found in 22 see also 20 for unbounded perturbations .
Ž . Ž . Ž .Note that the identity SS X � C SS X � FF X is not specific top p p

Ž . ŽL -spaces. In fact, it is also fulfilled for C � the Banach space ofp
.continuous scalar-valued functions on � with the supremum norm pro-

Ž 
 �.vided that � is a compact Hausdorff space see 24; 34; 35, p. 430 .
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Ž . ŽEssential spectra of closed densely defined operators on C � where �
.denotes a compact Hausdorff space under bounded as well as unbounded


 �additive perturbations were discussed in 20 .
Ž . Ž .5 Even though the description of the ideal structure of LL X is a

Ž .complex task, there exist some Banach spaces X for which LL X has only
one proper nonzero closed two-sided ideal. The first result in this direction


 �was established by Calkin 1 . He proved that if X is a separable Hilbert
Ž .space then KK X is the unique proper nonzero closed two-sided ideal of

Ž . 
 �LL X . An extension of this result was obtained by Gohberg et al. 8 . They

 �proved the same result for X � l , 1 
 p � �, and X � c . In 13 Her-p 0

man established the same result for a large class of Banach spaces, namely
Banach spaces which have perfectly homogeneous block bases and satisfy
Ž . Ž� for the definition and more information about these spaces we refer


 �. Ž .to 13 . Evidently the spaces l , 1 
 p � �, and c belong to this class.p 0
Ž .Obviously, if X has perfectly homogeneous block bases which satisfy � ,

then

KK X � FF X � FF X � FF X .Ž . Ž . Ž . Ž .� �

Ž .Consequently, for this class of spaces the only subset of LL X , which
permits us to obtain the results described in this section, is the ideal of
compact operators.
Ž .6 A Banach space X is said to be an h-space if each closed infinite

dimensional subspace of X contains a complemented subspace isomorphic
to X. Any Banach space isomorphic to an h-space is an h-space; c, c , and0

Ž . 
 �l 1 
 p � � are h-spaces. In 36, Theorem 6.2 , Whitley proved that if Xp
Ž . Ž .is an h-space, then SS X is the greatest proper ideal of LL X . This

together with Remark 2.5 implies that

KK X � FF X � FF X � SS X andŽ . Ž . Ž . Ž .�

KK X � FF X � FF X � SS X .Ž . Ž . Ž . Ž .�

This shows that the results of this section hold true for strictly singular
perturbations on h-spaces.

4. APPLICATION TO TRANSPORT EQUATION

The purpose of this section is to apply Theorem 3.2 to study the
essential spectra of the following one-speed neutron transport operator
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Ž 
 �.with general boundary conditions in slab geometry cf. 3, 11, 16


�
A � x , � � �� x , � � � � � x , �Ž . Ž . Ž . Ž .H 
 x

1
� 
 x , � , � � � x , � � d� �,Ž . Ž .H

�1


 � 
 �where x � �a, a for a parameter 0 � a � � and � � �1, 1 . Let us first
make precise the functional setting of the problem. Let

X � L D ; dx d� ,Ž .p p


 � 
 � Ž . 
 .where D � �a, a � �1, 1 a � 0 , and p � 1, � . Define the following
sets representing the incoming and the outgoing boundary of the phase
space D:

� � � 
 � 
 �� 4 � 4D � D � D � �a � 0, 1 � a � �1, 0 ,1 2

� � � 
 � 
 �� 4 � 4D � D � D � �a � �1, 0 � a � 0, 1 .1 2

Moreover, we introduce the following boundary spaces

� � � � � � � � � �L � L D , � d� 	 L D , � d� � L D , � d�Ž . Ž . Ž .p p p 1 p 2

� L� � L� ,1, p 2, p

endowed with the norm

1�pp p� � � � i �� � � � � �� , L � � , L � � , XŽ .p 1 1, p 2 2, p

1�p
1 0p p

� � � �� � �a, � � d� � � a, � � d� .Ž . Ž .H H
0 �1

� � � � � � � � � �L � L D , � d� 	 L D , � d� � L D , � d�Ž . Ž . Ž .p p p 1 p 2

� L� � L� ,1, p 2, p

endowed with the norm

1�pp p� � 0 � � �� � � � � �� , L � � , L � � , LŽ .p 1 1, p 2 2, p

1�p
0 1p p

� � � �� � �a, � � d� � � a, � � d� ,Ž . Ž .H H
�1 0

where 	 means the natural identification of these spaces.
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The boundary conditions may be written abstractly as an operator H
relating the incoming and the outgoing fluxes, namely

H : L� � L� � L� � L�� 1, p 2, p 1, p 2, p

� H Hu u11 121 1H �� u už / ž /ž /H H2 221 22

� � Ž � � .with H : L � L , H � LL L ; L , j, k � 1, 2, defined such that,j, k k , p j, p j, k k , p j, p
on natural identification, the boundary conditions can be written as

� Ž �.� � H � .
We define now the streaming operator T with domain including theH

boundary conditions,

�T : D T � X � XŽ .H H p p


�
� � T � x , � � �� x , � � � � � x , �Ž . Ž . Ž . Ž .H 
 x� 
�

� �
�D T � � � X , � � X , � � � � L ,Ž .H p p � D p½ 
 x

� � � �
�� � � � L ; and � � H � ,Ž .� � D p 5

Ž .where � 	 is a nonnegative, measurable, and almost everywhere finite
Ž . � Ž � �.T � Ž � �.T � � �function on �1, 1 , � � � , � , and � � � , � with � , � , � ,1 2 1 2 1 2 1

and �� given by2

� �� � � � �a, � , � � 0, 1 ;Ž . Ž . Ž .1
�� � � � a, � , � � �1, 0 ;Ž . Ž . Ž .2�
�� � � � �a, � , � � �1, 0 ;Ž . Ž . Ž .1
��� � � � a, � , � � 0, 1 .Ž . Ž . Ž .2

Remark 4.1. The derivative of � in the definition of T is meant in aH
Ž .distributional sense. Note that if � � D T , then it is absolutely continu-H

ous with respect to x. Hence the restrictions of � to D� and D� are
Ž .meaningful. Note also that D T is dense in X because it containsH p

�
Ž . Ž .�C �a, a � 1, 1 .0

Let � � X and consider the resolvent equation for Tp H

� � T � � � , 4.1Ž . Ž .H
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where � is a complex number and the unknown � must be sought in
Ž .D T . Let �* denote the real defined byH

�* � lim inf � � .Ž .
� �� �0

Ž .Thus, for Re � � ��*, the solution of 4.1 is formally given by

� x , �Ž .
Ž Ž .. � � Ž Ž .. � ���� � a�x ��� � x�x �x1� � �� �a, � e � e � x�, � dx�,� � � �Ž . Ž .� �H� �� �a

0 � � � 1;��
Ž Ž .. � � Ž Ž .. � ���� � a�x ��� � x�x �a1

� �� a, � e � e � x�, � dx�,� � � �Ž . Ž .� �H� �� x� �1 � � � 0;

4.2Ž .

Ž . Ž .whereas � a, � and � �a, � are given by

Ž Ž .. Ž Ž .. � ���� � ��� � a�xa1
�2 a �� a, � � � �a, � e � e � x , � dx ,� � � �Ž . Ž . Ž .� �H� �� �a

0 � � � 1; 4.3Ž .
Ž Ž .. Ž Ž .. � �.��� � ��� � a�xa1

�2 a �� �a, � � � a, � e � e � x , � dx ,� � � �Ž . Ž . Ž .� �H� �� �a

�1 � � � 0. 4.4Ž .

Ž . Ž . Ž .To allow the abstract formulation of 4.2 , 4.3 , and 4.4 , let us define the
following operators depending on the parameter �,

� � � � �M : L � L , M u � M u , M u withŽ .� p p � � �

� � � �Ž .Ž .�M u �a, � � u �a, � exp �2 a , 0 � � � 1;Ž . Ž .Ž .�� ž /� ��

� � � �Ž .Ž .�M u a, � � u a, � exp �2 a , �1 � � � 0;Ž . Ž .Ž .�� ž /� ��



FREDHOLM AND SEMI-FREDHOLM PERTURBATIONS 297

� � � �B : L � X , B u � � � B u � � � B u withŽ . Ž .� p p � Ž�1, 0. � Ž0 , 1. �

� �� � � � a � xŽ .Ž .�B u �a, � � u �a, � exp � , 0 � � � 1;Ž . Ž .Ž .�� ž /� ��

� �� � � � a � xŽ .Ž .�B u a, � � u a, � exp � , �1 � � � 0;Ž . Ž .Ž .�� ž /� ��

� � � �G : X � L , G � � G � , G � withŽ .� p p � � �

� �1 � � � � a � xŽ .Ž .1�G � � exp � � x , � dx , 0 � � � 1;Ž .H�� ž /� � � �� ��a

� �a1 � � � � a � xŽ .Ž .�G � � exp � � x , � dx , �1 � � � 0;Ž .H�� ž /� � � �� ��a

and

� � �C : X � X , C � � � � C � � � � C � withŽ . Ž .� p p � Ž�1, 0. � Ž0 , 1. �

� �x1 � � � � x � x�Ž .Ž .�C � � exp � � x�, � dx�,Ž .H� ž /� � � �� ��a� 0 � � � 1;
� �a1 � � � � x � x�Ž .Ž .�C � � exp � � x�, � dx�,Ž .H� ž /� � � �� �x� �1 � � � 0,

Ž . Ž .where � 	 and � 	 denote, respectively, the characteristic func-Ž�1, 0. Ž0, 1.
Ž . Ž .tions of the intervals �1, 0 and 0, 1 . Let � denote the real defined by0

� ����* if H 
 1;� 1� �0 � � � ���* � log H if H � 1.Ž .� 2 a

Simple calculations using Holder’s inequality show that these operators are¨
bounded on their respective spaces. In fact, for Re � � ��*, the norms of
the operators M , B , G , and C are bounded above, respectively, by� � � �

�2 aŽRe ���*. 
 Ž .��1� p Ž .�1e , p Re � � �* , Re � � �* where q denotes the con-
jugate of p.

Using these operators and the fact that � must satisfy the boundary
Ž . Ž . �conditions, Eqs. 4.3 and 4.4 can be written in the space L in thep

operator form

��� M H��� G � .� �
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The solution of this equation reduces to the invertibility of the operator
Ž . Ž .UU � � I � M H which is the case if Re � � � . This gives� 0

�1�� � UU � G � . 4.5� 4Ž . Ž .�

Ž . �On the other hand, 4.2 can be rewritten as � � B H� � C �. Substitut-� �

Ž . � Ž .4�1ing 4.5 into the last equation we get � � B H UU � G � � C �. Thus� � �

�1�1
� � T � B H UU � G � C .� 4Ž . Ž .H � � �

On the other hand, observe that the operator C is nothing else but�

Ž .�1� � T where T designates the streaming operator with vacuum0 0
� Ž .4boundary conditions, i.e., H � 0. Obviously, if the operator UU � is

Ž . Ž . Ž .boundedly invertible for example, if Re � � � , then � � � T � � T0 H 0
and

�1 �1
� � T � � � T � RR , 4.6Ž . Ž . Ž .H 0 �

� Ž .4�1where RR � B H UU � G .� � �


 �The essential spectra of T were analyzed in detail in 22, Remark 4.1 .0
In particular, we have

� 4� T � � � � such that Re � 
 ��* for i � 1, . . . , 6. 4.7Ž . Ž .ei 0

Remark 4.2. Note that if the boundary operator H is strictly singular,
Ž 
 �.then RR is strictly singular too use 17, Lemma 461 . Therefore, Theorem�

Ž . Ž . Ž 
 �.3.2 and Eqs. 4.6 , 4.7 imply that compare to 22, Theorem 4.1

� 4� T � � � � such that Re � 
 ��* , i � 1, 2, 3, 4, and 5.Ž .ei H

Next we consider the transport operator A � T � K where K is aH H
bounded operator given by

K : X � X� p p� 4.8Ž .1
� � 
 x , � , � � � x , � � d� �Ž . Ž .H�

�1

Ž . 
 � 
 � 
 �with 
 	, 	 , 	 a measurable function from �a, a � �1, 1 � �1, 1 into
��.

Observe that K acts only on the velocity variable � �, so x may be

 �viewed merely as a parameter in �a, a . Hence, we may consider K as a

Ž . 
 � Ž . Ž Ž
 � ..function K 	 : x � �a, a � K x � LL L �1, 1 , d� .p
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In the following we will make the assumptions

�the function K 	 is strongly measurable,Ž . 4.9Ž .

 �there exists a compact subset CC � LL L �1, 1 , d�Ž .Ž .p� 4.10Ž .
 �such that K x � C a.e. on �a, a ,Ž .

4.11Ž .� 
 � 
 �and K x � KK L �1, 1 , d� a.e. on �a, a ,Ž . Ž .Ž .p

Ž Ž
 � ..where KK L �1, 1 , d� denotes the set of compact operators onp
Ž
 � .L �1, 1 , d� .p

Ž .We now introduce the class GG X of collision operators defined byp

�1
GG X � K � LL X such that � � T K � SS XŽ .Ž . Ž . Ž .½p p H p

for some � � � T .Ž . 5H

Ž .DEFINITION 4.1. A collision operator K , in the form 4.8 , is said to be
Ž . Ž . Ž .regular if it satisfies the assumptions 4.9 , 4.10 , and 4.11 above. We

Ž .denote by RR X the set of all regular collision operators on X .p p


 � ŽNote that if K is regular on X then, by 20, Proposition 3.2 , � �p
.�1 Ž .T K is compact on X for 1 � p � � resp. weakly compact on X .H p 1

Ž . Ž . ŽTherefore, using the inclusion KK X � SS X resp. the fact that the setp p
Ž . 
 �.of weakly compact operators on X coincide with SS X , see 26 , we1 1

Ž . Ž .obtain the inclusion RR X � GG X . On the other hand, it is easy to seep p
Ž .that the set of collision operators whose kernels of the form 
 � , � � �

1 1Ž . Ž . Ž
 � . Ž
 � .f � g � � where f � L �1, 1 , d� and g � L �1, 1 , d� , � � 1,p q p q
Ž . Ž .is contained in RR X . This shows that GG X � �.p p

We are now ready to prove:


 .THEOREM 4.1. Let p � 1, � and assume that the collision operator
Ž .K � GG X . Thenp

� A � � T , for i � 1, . . . , 5.Ž . Ž .ei H ei H

Moreo�er, if H is a strictly singular boundary operator, then

� 4� A � � � � such that Re � 
 ��* , for i � 1, . . . , 5.Ž .ei H
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Ž . 
Ž .�1 �Proof. Let � � � T be such that r � � T K � 1. Then � �H � H
Ž .� T � K andH

n�1 �1 �1 �1
� � A � � � T � � � T K � � T .Ž . Ž . Ž . Ž .ÝH H H H

n�1

4.12Ž .

Ž . Ž . Ž .�1 Ž .�1Since K � GG X , Eq. 4.12 shows that � � A � � � T �p H H
Ž .SS X . Hence Theorem 3.2 gives the first assertion. On the other hand,p

Ž . Ž .the use of Eq. 4.5 allows us to write 4.12 in the form

n�1 �1 �1 �1
� � A � � � T � RR � � � T K � � T .Ž . Ž . Ž . Ž .ÝH 0 � H H

n�1

Ž .�1 ŽTherefore the strict singularity of H implies that of � � A � � �H
.�1 Ž .T . Now the second item follows from 4.7 and Theorem 3.2. Q.E.D.0
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